
The Visual Computer manuscript No.
(will be inserted by the editor)

Generating Animation from Natural Language Texts and
Semantic Analysis for Motion Search and Scheduling

Masaki Oshita

Received: date / Accepted: date

Abstract This paper presents an animation system
that generates an animation from natural language texts
such as movie scripts or stories. It also proposes a frame-
work for a motion database that stores numerous mo-
tion clips for various characters. We have developed se-
mantic analysis methods to extract information for mo-
tion search and scheduling from script-like input texts.
Given an input text, the system searches for an appro-
priate motion clip in the database for each verb in the
input text. Temporal constraints between verbs are also
extracted from the input text and are used to schedule
the motion clips found. In addition, when necessary,
certain automatic motions such as locomotion, taking
an instrument, changing posture, and cooperative mo-
tions are searched for in the database. An animation
is then generated using an external motion synthesis
system. With our system, users can make use of ex-
isting motion clips. Moreover, because it takes natural
language text as input, even novice users can use our
system.

Keywords computer animation · motion database ·
natural language processing

1 Introduction

Recently, computer animation has been widely used in
movies, video games, TV programs, web graphics, etc.
Because computer animation is a very powerful tool

Masaki Oshita
Kyushu Institute of Technology
680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
Tel.: +81-948-29-7718
Fax: +81-948-29-7709
E-mail: oshita@ces.kyutech.ac.jp

to present a story, drama, or instruction, there are de-
mands from non-professional people to create computer
animation. However, it is a difficult task because of two
main issues. The first issue is the difficulty of making
and reusing motion data. Currently, motion data are
mainly created using motion capture or keyframe tech-
niques. Either way, they are very time consuming and
require professional skills. Although there are demands
for reusing existing motion data, this is difficult because
of the lack of a system for storing and searching large
amounts of motion data. Because there can be various
motions of various characters, it is difficult to manage
them in a standard file system or database. Currently,
most motion data are created from scratch for indi-
vidual scenes and are thrown away without reuse. The
second issue is the limitation of current animation sys-
tems. A computer animation can be created by combin-
ing a number of existing motion clips using animation
software such as MotionBuilder, Maya, 3ds Max, etc.
However, it is difficult for novice users to utilize such
software, because handling motion data is tricky and
these systems require training.

To address these issues, we developed an animation
system that generates an animation from natural lan-
guage texts such as movie scripts or stories (Fig. 1). We
also developed a motion database that stores many mo-
tion clips for different characters. When an input text
is given, the system searches for an appropriate motion
clip from the database for each verb. Temporal con-
straints between verbs are also extracted from the input
text. The searched motion clips are scheduled based on
the temporal constraints. In addition, when necessary,
some automatic motions such as locomotion, taking an
instrument, changing posture, and cooperative motions
are searched from the database. The system outputs
a motion timetable which consists of motion clips and

2

Neo waves to Jack. At the same time, Jack takes the red bottle. Jack hits Neo with it.

wave

take hit

Neo

Jack

locomo

locomo

stagger

locomo

(a) Input text

(b) Output motion timetable (c) Generated animation

time

Fig. 1 Example of our system. (a) Input text. (b) Searched motion clips and their execution timings. (c) Generated animation.

their execution timings. An animation is then gener-
ated using an external motion synthesis system. Using
our system, even novice users can create animation by
making use of existing motion clips.

There are many possible applications of our sys-
tem. Recently, in movie production, simple animations
are created before production to check camerawork,
screenplay, necessary visual effects, etc. These anima-
tions are called “previsualization” or “animatics”. They
are also often created for the scenes in which no com-
puter graphics are involved. Using our system, even
directors or writers who are not professional anima-
tors can create an animation very quickly. Moreover,
our system can be used by non-professional people who
want to make an animation but do not have professional
skills. It can also be used for children to visualize a story
to make it interesting and easy to understand. Our sys-
tem can be used for movie production. Even though
animators want to add more details to the output of
our system, our method is much easier than making
animations from scratch.

In this paper, we propose a motion frame that con-
tains meta-information about a motion clip, an object-
oriented database framework for storing a number of
motions of a number of characters in a hierarchical
structure, natural language analysis methods that are
specialized for extracting motion related descriptions
from an input text, and scheduling of multiple motions
based on the temporal constraints in an input text. In
addition, we have done preliminary experiments which
showed that our system generates expected results from
various input texts.

This paper is an extended version of our previous
work [1]. As explained in Section 5, we have mainly
extended our natural language analysis methods to en-
able our system to handle various expressions in input
texts. Based on the experiments presented in Section 8,
87% of the verbs in a sample movie script can be dealt
with using our methods and represented as motions, al-

though 78% of these were handled by the system before
the extension [1].

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work in the literature. Section 3
gives an overview of our system. Sections 4, 5, 6, and 7
describe our methods used in the framework of the mo-
tion database, natural language analysis, motion search
and motion scheduling, respectively. In Section 8 some
experimental results are presented together with a dis-
cussion thereof. Finally, Section 9 concludes the paper.

2 Related Work

Generating animation from natural language texts has
been a challenge. Many research groups have tackled
this problem. The SHRDLU system, which was devel-
oped by Winograd [2], is known as the pioneer. Using
SHRDLU, a user can give commands to a robot using
English in an interactive manner, and make it arrange
objects in a scene. However, the types of commands
were very limited.

Badler et al. [3][4] developed virtual agents that fol-
low natural language interactions. They proposed Pa-
rameterized Action Representation (PAR), which has
a similar purpose to the motion frame in our research.
The PAR has more complex information such as pre-
condition and achievement. The motion generator of
each PAR is programmed using a state machine. It
can use motion data or any motion generation meth-
ods. However, specifying detailed information and con-
structing motion generators are very time consuming.

Tokunaga et al. [5] developed the K2 system, which
has similar goals to Badler et al. In their system, agents
are controlled via spoken language. Their research is
rather focused on solving the vagueness of natural lan-
guage instructions. They use case frames [6] to search
for motions. Unlike our work, they use all cases that are
used in linguistic analysis. The interpretation of each
case is left to the user who adds the case frame han-

3

dler. The motion generator for each case frame must be
manually programmed by the user.

These previous works aim at developing intelligent
agents that understand natural language instructions
and make plans to execute them. However, the sys-
tems are very complex, and many rules are required.
On the other hand, our system aims to reuse existing
motion data easily and efficiently. The motion frame in
our work contains just enough information to search for
appropriate motions that match natural language texts
and it is easy to describe. We believe that our system
is more practical.

Lu and Zhan [7] developed an animation production
system that includes story understanding, plot plan-
ning, act planning, camera planning, etc. Although their
system takes simple Chinese as input, it requires a great
deal of additional knowledge, including not only case
frames but also many dictionaries, templates and rules.

Sumi et al. [8] developed a system for visualizing
short stories for children. The system extracts keywords
from an input text, and chooses an appropriate scene,
characters, and motions from a database. It simply plays
a motion that matches the keywords. Although a user
can add motion data to the system, the system cannot
select motions appropriate for the objects or charac-
ters and cannot generate interactions between charac-
ters and the scene.

There is very little research that deals with motion
scheduling from natural language texts. The above sys-
tems simply execute motions as instructions are given
or events happen, and no scheduling is considered. How-
ever, in order to execute multiple motions of multiple
characters as instructed by an input text, the execution
timing of the motions must be coordinated. Baba et
al. [9] developed a system for generating an animation
that satisfies temporal and spatial constraints given by
natural language texts. The system determines appro-
priate initial positions of the agents and objects that
are specified in the input text. However, the motions of
the agents and motion scheduling were not considered.

Coyne and Sproat [10] developed WordsEye, which
converts natural language texts to a scene. Because
their purpose is to generate a still image, when a char-
acter motion is indicated in a given text, the system
simply chooses a pose for the action from the database.

There have been various studies on generating a
character’s gestures for a monologue or conversation
[11]. These methods generate motions by composing
short fragments of motions based on signal processing of
the input speech rather than by interpreting the mean-
ing of the speech.

There are also animation engines that support some
script language such as Improv [12] and Alice [13]. How-

ever, it is still difficult to program the agents and to
make use of a large amount of existing motion data. In
addition, markup language formats for describing an-
imation including scenes, characters and actions have
been proposed [14][15] . However, they are difficult to
describe by hand. The animation files should be cre-
ated by using specific authoring software. Moreover, it
is difficult to add and reuse motion data using such file
formats and authoring software.

There are many motion synthesis methods which
generate new motions from a small number of motions
[17][18]. However, they require a manual setup for each
motion module. It is difficult for end users to add new
motion modules. Although currently our system selects
one motion from the database, it is possible to extend
our system to blend a number of selected motions based
on quantitative motion query parameters such as con-
tact position.

3 System Overview

In this section, we explain the overview of our system
(Fig. 2) and data representation (Fig. 3).

When an input text is given to the system, natu-
ral language processes (syntax analysis and semantic
analysis) are applied first. The syntax analysis is the
process of converting a plain text to a tree structure
with phrase tags and dependencies. Fig. 3(b) is an ex-
ample of the analyzed tree which is computed from an
input text (Fig. 3(a)). The type of each phrase and the
dependency between phrases are determined. For exam-
ple, S, NP, VP and PR in Fig. 3(b) represent sentence,
noun phrase, verb phrase and preposition, respectively.

The semantic analysis extracts information about
motions described in the input text from the tree struc-
ture. A query frame contains information for the mo-
tion search. One is generated for each verb in the text.
The temporal constraints contain information about ex-
ecution timing between verbs. For example, QF1∼QF3
and TC1∼TC2 in Fig. 3(c) represent query frames and
temporal constraints, respectively.

Based on the temporal constraints, motion schedul-
ing determines the execution order of each motion clip,
which corresponds to each query frame as shown in Fig.
3(d). Note that exact execution times are not decided
at this point, because the duration of each motion is
not known until motion clips are searched from the
database and automatic motions are added later.

The motion search is applied for each query frame.
In addition, when it is necessary, automatic motions
are inserted before the motion. Finally, motion clips
and their execution timings are passed to the motion

4

Input Text

Syntax Analysis

Semantic Analysis

Analyzed Tree

Query Frames

Temporal Constraints

Motion Scheduling

Motion Search

Motion Synthesis

Scheduing Information

+ Query Frames

Scheduing Information

+ Motion Clips

Animation

Scene Information

Characters and Objects

Motion

Database

Fig. 2 System overview.

Neo waves to Jack. At the same time, Jack takes the red bottle. Jack hits Neo with it.

Neo waves to Jack. At the same time, Jack takes the red bottle. Jack hits Neo with it.

NP

VP

NP
PP

S

NP

VP
NP

S

NP

VP

NP
PP

S

QF1

agent: Neo

motion: wave

target: Jack

QF2

agent: Jack

motion: take

target: red bottle

QF3

agent: Jack

motion: take

target: Neo

instrument: red bottle

TC2

Serial

QF2 -> QF3

TC1

Synchronized

QF1 = QF2

QF1

QF2 QF3

Neo

Jack

wave

take hit

Neo

Jack

locomo

locomo

stagger

locomo

(a) Example of an input text

(b) Analyzed tree

(c) Query frames and temporal constraints

(d) Scheduling information and query frames

serial

synchronized

(e) Output motion timetable

 (Motion clips and their execution timings)

time

NPNP
PP

Fig. 3 Example of data representation.

synthesis module as a motion timetable, as shown in
Fig. 3(e).

The motion synthesis generates an animation by
smoothly connecting given motion clips. The interac-
tions between characters and between a character and
objects are handled by this module based on the infor-
mation that the motion clips have.

The scene information contains characters and ob-
jects and their initial states, including postures, posi-
tions, and orientation. Each object has certain object
information including names, a default contact point,
alternative contact points and their names. For exam-
ple, a desk object has “desk”, “table”, etc. as its names.
An object also has sets of pairs consisting of a part
name and its position (e.g., “above”, “under”, “side”,
etc.). This information is used to search for appropri-
ate motions and determine appropriate contact posi-
tions according to an adjective that is used in the in-
put text. In addition, an object has a default position
which is used when no adjective is specified. This kind
of object information is commonly used in similar ap-
proaches [5][10]. In addition, a scene also has default
entering and leaving points as the default goal locations
for locomotive motions (see Section 5.5). Currently, our
system assumes that the scene information is provided
in advance by the user.

The scope of this paper is the components in the
dotted box in Fig. 2. There are many tools for syn-
tax analysis that can be used with our system. The
Stanford parser [19] is used for our implementation.
For motion synthesis, our system uses an external an-
imation system [20]. The system generates continuous
motions from given motion clips and their execution
timings. The system determines an appropriate synthe-
sis method for each transition based on the constraints
between the foot and the ground during motions. Al-
ternatively, another commercial animation system such
as MotionBuilder, Maya, 3ds Max, etc. can be used.

4 Motion Database

In this section, we describe the representation of mo-
tion data. We first explain the case frame that is used
in natural language processing. Then, we explain our
motion frame, which is inspired by the case frame. We
also describe our database of characters and motions.

4.1 Case Frame

The idea of a case frame was proposed by Fillmore [6].
A case frame represents the role of a verb. Each case of

5

a case frame is a phrase that represents an aspect of the
verb. Typically a case frame has the following cases:

– Agent: the person who performs the motion.
– Experiencer: the person who experiences something.
– Object: the object that an effect is caused to during

the motion.
– Instrument: the object that causes an effect during

the motion.
– Source: the source or origin of the motion.
– Goal: the goal or target of the motion.
– Time: the time when the motion is performed.
– Location: the location where the motion is performed.

Each case needs to be a specific type of entity. Some
cases are mandatory for some verbs. A verb that has
different roles depending on context has multiple case
frames.

In general natural language processing systems, a
procedure to select a case frame for an input text is as
follows. First, based on the types and dependency of
phrases in the analyzed tree, candidate cases of each
phrase are determined. By searching for case frames
that match the candidate cases, the most appropriate
case frame and all its cases are determined.

The case frame is a good way to extract and rep-
resent the meanings of texts. The case frame is widely
used in many research papers such as [5][10]. However,
the case frame is not suitable for representation of mo-
tion data for animation. From the view point of motion
representation, each case has different roles depending
on case frames. For example, the “object” case of a case
frame could be an object that the character uses or an-
other character that the character’s motion causes an
effect on. Moreover, the case frame does not contain in-
formation about postures and contact positions, which
are important for selecting motions.

4.2 Motion Frame

We propose a motion frame, which contains the infor-
mation about a motion clip. The motion frame is in-
spired by the case frame. However, we define the items
of the motion frame based on importance when we
search for a motion according to input texts.

There are many kinds of verbs in general English.
However, our system handles only action verbs that in-
volve a physical motion, in other words, verbs that can
be visualized as an animation. Other kinds of verbs
such as non-action verbs (e.g., “think”, “believe”) or
state verbs (e.g., “know”, “exist”) are ignored in our
system, because they are difficult to represent by a mo-
tion clip. Action verbs are categorized into intransitive,

Names of Motion

Item Value

Agent human

Instrument NULL

Target appropriate size and weight ranges

Contact Position hand position of contact

take, pick up, get

Initial Posture standing

Adverbs slowly

Target Direction NULL

Fig. 4 Example motion frame of “taking-an-object”.

transitive, and ditransitive verbs. Intransitive verbs in-
volve no other object (e.g., “he runs”). Transitive verbs
include one target object/character/position (e.g., “he
opens the door”, “he hits her”, “he walks to the door”).
Ditransitive verbs include two target objects (e.g., “he
gives her the book”, “he cuts the bread with a knife”).
For distractive verbs, one of the two target objects should
be the object that the character possesses. We call such
objects “instruments”. Therefore, action verbs have at
most one “target” object /character/position and at
most one “instrument” object. We use them as items of
a motion frame instead of cases in a case frame. In ad-
dition, contact position is used to select a motion that
fits the environment and previous motions.

The items of the motion frame are as follows. An
example of a motion frame is shown in Fig. 4. Note
that some items may not have any value depending on
the motion.

– Agent Magent ref : The reference to the character in
the database who performs the motion.

– Names of motion Mmotion strings: The set of verbs
that represent the motion. When a verb in the in-
put text matches one of the motion names, the mo-
tion frame will be a candidate for the verb. To han-
dle ambiguity, a motion frame may have multiple
names. For example, a “taking-an-object” motion
may have “take” and “pick up” as its names.

– InstrumentMinstrument ref ,Minstrument params: The
object that the character uses in the motion. This
is either a reference to an object in the database
Minstrument ref or the size and weight ranges of an
object Minstrument params . If the motion requires a
specific object such as “cutting with a knife”, the ob-
ject should be specified as a reference to the instru-
ment. Otherwise abstract conditions of an object
are specified. For example, if the motion is “poking
something with a long object”, then appropriate size
and weight ranges of the object are specified.

– Target: The reference to an object Mtarget ref or the
size and weight ranges Mtarget params are specified
in the same way as the instrument. If the target is a

6

character, the reference to the character is specified
in Mtarget ref .

– Contact positionMcontact vertical,Mcontact horizontal:
the position of the end-effector when it makes con-
tact with the target. A contact position is specified
when the motion involves contact with a target char-
acter or object. Vertical and horizontal positions are
handled differently. Because the horizontal position
can be adjusted by lateral movement (see Section
7.2), the vertical position is more important for mo-
tion selection. For example, if multiple “taking an
object” motions are in the database and an input
text “he takes the bottle on the ground” is given,
then based on the position of the bottle, the appro-
priate taking motion (e.g., “taking an object with
squatting”) will be selected. The contact position is
automatically computed from the contact informa-
tion (see Section 4.3) of the motion data. The con-
tact position is expressed in the local coordinates of
the motion data.

– Target direction Mtarget direction: The direction of
the target. For some motion, even though the mo-
tion does not involve contact with the target, the
target direction is important. For example, when
“waving to a person” or “shooting a target” motion
is executed, the character should face the right di-
rection. For some motion, both contact position and
target direction are specified. For example, “sitting
down on a sofa” motion should make contact with
a sofa from the front of the sofa.

– Initial posture Minitial posture flag: the character’s
posture when the motion begins. Currently, it is rep-
resented as one of three states: standing, sitting, or
lying down. The initial posture is used to select a
motion that matches the terminal posture of the
previous motion. In cases where no such motion is
in the database, an automatic changing posture mo-
tion will be added (see Section 7.2).

– Adverbs Madverb strings : The set of adverbs rep-
resent the style of the motion such as “slowly” or
“happily”.

Each item of motion frames must be specified by
a user. However, this is not such a difficult task for
users. For each motion frame (each motion clip), the
user is asked to specify the agent, verbs, target, and
instrument. The agent is selected from the character
database. For the target and instrument, it is either
an appropriate object or agent that is selected from
the database or the size and weight range of an ob-
ject. When the motion involves a specific object (e.g.,
“cutting with a sword”), the object should be selected.
Otherwise, object conditions are specified (e.g., “lifting
up a light object using one hand”). The contact posi-

tion is automatically computed form the motion and its
contact information (see Section 4.3). The initial pos-
ture is also automatically computed from the motion
clip. As a result, specifying the items of a motion frame
is very easy.

4.3 Motion Data

Our system supposes that each motion is short and sim-
ple. A complex motion is difficult to represent by a mo-
tion frame. If a user wants to add a long motion to the
database, the motion should be divided into pieces.

Some motions involve an interaction with an object
or a character. This information is very important for
generating animation and for selecting motions. There-
fore, it is specified on the motion frame. The contact
information consists of the contact type (hold, release,
or hit), contact time (local time in the motion clip) and
the end-effector (e.g., right hand). This information is
also necessary for generating animation in the motion
synthesis module (see Section 6.2).

Some motions that interact with another character
cause the reaction of the other character (e.g., “Jack
hits Neo. Neo falls”). Usually such cooperative motions
are captured or created at the same time but are stored
as separate motion clips. In our system, such coop-
erative motions are specified on the motion frame. If
a motion has cooperative motions and no cooperative
motion is indicated in the input text, the system au-
tomatically executes a cooperative motion (see Section
7.2). In addition, when two cooperative motions include
physical contact, the timings and the initial positions
of these motions are coordinated (see Section 7.1).

4.4 Character and Motion Database

We use an object-oriented framework for the character
and motion database. As shown in Fig. 5, each char-
acter is considered to be an object that has various
motions as its methods. A character inherits from a
base character. A motion of the base character can be
overridden by another motion. The motions that are
not overridden are used as the motions for the derived
character. In this way, the hierarchy of characters and
their motions are efficiently managed. A character can
inherit from multiple base characters. All motions that
the base characters have are used for the derived char-
acter. Since the motion that most closely matches an
input sentence is selected from the available motions,
even if there are multiple motions with the same name,
there is no problem with conflicts caused by the multi-
ple inheritance.

7

+ Walk

+ Take

+ Hit

…

Human

+ Walk

+ Take

+ Hit

…

Human

+ Take (specialized)

…

Male

+ Take (specialized)

…

Male

…

Female

…

Female

+ Take (specialized)

+ Hit (specialized)

…

Jack

+ Take (specialized)

+ Hit (specialized)

…

Jack

+ Walk (specialized)

+ Take (specialized)

+ Hit (specialized)

…

Trained Person

+ Walk (specialized)

+ Take (specialized)

+ Hit (specialized)

…

Trained Person

+ Hit (specialized)

…

Neo

+ Hit (specialized)

…

Neo

Fig. 5 Example of a hierarchical database of characters.

If a user wishes to create a new character, s/he sim-
ply adds the new character that inherits from a base
character or multiple base characters to the database
and adds character-specific motions to that character.
Even if there are not many new motions for the new
character, the motions of the base characters are used.
In this way, users can add new characters very easily.

The database can be implemented in various ways.
If the characters and motions are implemented using
an object-oriented programming language (e.g., C++
or Java), we would represent motions as objects rather
than methods and implement a mechanism of motion
inheritance on the character class, because it is practi-
cally difficult to handle motions as methods using such
programming languages.

5 Natural Language Analysis

Although natural language processing techniques have
advanced in recent years, it is still a challenge to un-
derstand general texts, because it requires not only lan-
guage processing but also a large knowledge of the world.
However, our system is supposed to take script-like text
and only motion-related descriptions in the text matter.
This makes the natural language analysis much eas-
ier than general natural language processing systems
such as machine translation or summarization systems.
Moreover, because scene information, such as charac-
ters and objects, is given in advance, we do not need
the same large dictionary required by general natural
language processing systems.

As explained in Section 3, the semantic analysis
takes an analyzed tree and generates query frames and
temporal constraints. A query frame contains informa-
tion of a verb for the motion search. The temporal con-
straints contain information about the execution timing

between verbs. In the followings of this subsections, we
explain how the semantic analysis works.

5.1 Query Frame

To select a motion that matches an input text, we use
a query frame, which has the same items as the motion
frame, and whose items are determined by analyzing
the syntax tree of the input text (see Fig. 3(b)). Scene
information is also used to determine some items.

As explained in Section 4.2 , unlike generic semantic
analysis, motion searches only need a target and an
instrument for each verb. Therefore, we determine these
by applying the following rules to each verb in the input
text.

– A verb is used as the name of motion of the query
frame Qmotion strings. If the verb is followed by a
preposition or noun, then all sets of the verb and
the following word are also set to Qmotion strings,
because this could represent an idiom. Therefore,
Qmotion strings can contain multiple phases. For ex-
ample, in “Jack falls back”, both the phrases “fall”
and “fall back” are set to Qmotion strings.

– If a noun represents a character in the scene and
the verb is dependent on the noun, the character is
considered as the agent (subject) of the query frame
Qagent ref .

– If two nouns are dependent on the subject that the
verb is related to, they are considered as the tar-
get Qtarget ref and the instrument Qinstrument ref .
(E.g., in “Jack gives Neo the book”, “Neo” is the
target and “the book” is the instrument.)

– If only one noun is dependent on the subject, it is
considered as the target Qtarget ref .

– If a preposition phrase (e.g., “to Neo”) is depen-
dent on the subject, it is considered as the target
Qtarget ref or the instrument Qinstrument ref de-
pending on the preposition. If the preposition is
“with” and the noun in the phrase represents an
object, the object is used as the instrument. Other-
wise, the noun is used as the target.

– If the character is holding an object, the object is
also used as Qinstrument ref , even if it is not speci-
fied in the input text.

– If a phrase considered to be an adverb in the syntax
analysis is dependent on the subject, the phrase is
used as one of the adverbs Qadverb strings that can
contain multiple phrases.

After the names of the target and instrument are de-
termined, we obtain the reference or value of each item
from the scene information. We suppose that the char-
acters or objects in input texts always exist in the scene.

8

Therefore, unlike general semantic analysis, by looking
up the scene information all nouns in input texts are
determined.

The target character or object that is indicated in
the input text is searched from the scene information
and the reference and position are set to the query
frame. When the target is a character and a body part is
indicated in the text such as “She hit him in the head”,
the reference and position of the body part is set. When
the target is an object in the scene, the target size and
weight are set in the query frame. The contact posi-
tion Qcontact vertical, Qcontact horizontal and the target
direction Qtarget direction are set based on the position
and direction, respectively, of the target character or
object. If an adjective is used in the input text (e.g.
“top of the table”, “under the table”) and the object
has the corresponding part (see Section 3), the posi-
tion of the corresponding part assigned to the object
is used as the contact position. If there is no adjective,
the default position specified for the object is used. The
instrument object that is indicated in the input text is
also set to the query frame.

5.2 Temporal Constraints

Temporal constraints are extracted from input texts.
The types of temporal constraint are serial execution
or synchronized execution between two verbs. A serial
execution constraint has the execution order of two mo-
tions. A synchronized execution constraint has relative
execution timing. Temporal constraints are generated
from a syntax tree as follows:

1. For all pairs of sequential verbs in the input text, se-
rial execution constraints are assigned. For example,
when the input text “Jack walks in the room. Neo
stands up.” is given to the system, a serial execution
section constraint (Jack, walk) to (Neo, stands up)
is generated.

2. When a word that indicates a reverse order exists in
the input text (e.g., “after”), the order of the serial
execution constraint is reversed. If a serial execution
constraint is already created, the old constraint is
overridden. For example, when the input text “Jack
walks in the room after Neo stands up.” is given
to the system, a serial execution constraint (Neo,
stands up) to (Jack, walk) is generated.

3. When a word that indicates synchronization exists
in the input text (e.g., “at the same time” or “while”),
a synchronized execution constraint is added. If there
is a conflicting constraint, it is overridden. For ex-
ample, when the input text “Jack walks in the room.
At the same time, Neo stands up.” is given to the

system, a synchronized execution constraint (Neo,
stands up) and (Jack, walk) is generated. The rela-
tive timings between two motions are set to zero so
that they start at the same time.

4. When the motions of two characters are cooperative
motions and they include contact with each other, a
synchronized execution constraint is added and the
relative execution timings of the two motions are
determined based on their contact information (Sec-
tion 4.3). For example, when the input text “Jack
hits Neo. Neo falls” is given to the system, a syn-
chronized execution constraint (Jack, hit) and (Neo,
fall) is generated. At this point, the relative timings
are not set. They will be set based on the contact
times in the searched motion data, when the mo-
tions are searched later.

5.3 Adjective and Pronouns

Sometimes a character or an object is referred to by
a combination of adjectives and a noun instead of its
name. In this case, the system has to determine to
which character or object the expression refers. More-
over, when a pronoun (e.g., “he”, “she”, “it”, “they”)
is used in the input text, the system has to determine
to which character or object the pronoun refers. This
process can be difficult especially when ambiguous or
euphemistic expressions are used. However, since our
system is meant to take simple script-like texts, we han-
dle these problems using the following method.

Each character and object in our database has a
list of adjectives, nouns, and pronouns by which the
character can be referred to. For example, a male sol-
dier character would have “he”, “they”, “man”, “guy”,
“soldier”, etc. as its list of adjectives and pronouns.
The list is inherited from the base character. If the ad-
jective, noun, or pronoun appearing in the input text
represents a single character or object (e.g., “he”, “the
soldier”, “it”), the system searches for a character or
an object that matches the words.

However, if the words are ambiguous, meaning that
there are multiple characters or objects matching the
given adjective, noun, or pronoun in the scene, the sys-
tem has to choose an appropriate character or object.
Basically, if the noun or pronoun represents a character
or an object, this should be mentioned in the previ-
ous sentences. A character can be the agent Qagent ref
or the target Qtarget ref of the query frame, while an
object (e.g., “it”) can be the target Qtarget ref or the
instrument Qinstrument ref thereof. By using this con-
straint, the noun or pronoun is determined as follows.

9

1. If one of two items is clearly mentioned in the input
text, the other should be a different character or ob-
ject. For example, if the input text is “Neo comes to
Jack. Jack gives him a book”, the word “him” can-
not represent Jack since Jack is already the agent
Qagent ref of the query frame of the second sentence.
Therefore, in this case, the system searches for char-
acters in the previous sentence and uses the other
character Neo as the target Qtarget ref .

2. If both of the items for characters are pronouns,
the agent of the previous sentence is also used as
the agent Qagent ref . For example, if the input text
is “Neo comes to Jack. He gives him a book”, the
system decides that the first “he” in the second sen-
tence represents Neo. In the same way, if both the
items for objects are pronouns, although this is not
common, the target of the previous sentence is used
as the current target and the instrument of the pre-
vious sentence is used as the current instrument.

If the noun or pronoun represents multiple charac-
ters (e.g., “they”, “soldiers”), the sentence should be
represented by multiple motions. Therefore, in such a
case, multiple query frames are generated. For example,
if the input text is “Neo hits the soldiers” and there are
two soldiers A and B in the scene, two query frames
are generated with all items except the target character
the same. The same rule is applied when an item of the
query frame represents multiple characters (e.g., “Neo
and Jack walk.”). However, if a motion frame match-
ing the motion name has a target direction, but not a
contact position, the center position of all characters re-
ferred to is used as the target direction, instead of gen-
erating multiple query frames. For example, with the
input “Neo shoots the soldiers”, the “shooting” motion
frame has only a target direction, and a query frame
whose target position is the center of the soldiers is
generated.

5.4 Infinitives and Gerunds

Infinitives and gerunds are often used with a verb. In
this case, the system generates appropriate query frames
and temporal constraints depending on the verb.

– If the verb is “do”, “perform”, etc. (e.g., “Neo per-
forms dancing“), the infinitive or the gerund is rep-
resented as the motion and is used to generate a
corresponding query frame. In this case, the verb is
not involved in the query frame.

– If the verb is “start”, “try”, etc., the infinitive or the
gerund is used to generate a corresponding query
frame in the same way. However, in this case, the

next event is considered to happen before the mo-
tion finishes. Therefore, a temporal constraint is gen-
erated to execute the next motion just after this
motion starts.

– If the verb is “repeat”, “keep”, etc., the infinitive
or gerund is used to generate a corresponding query
frame. The motion is repeated before the next mo-
tion starts, and is therefore, specified in the query
frame. This information is used for motion schedul-
ing to duplicate a motion when it can be executed
more than once.

– It the verb does not fall into any of the above cases,
both the verb and the infinitive or gerund are rep-
resented as motions (e.g., “Neo walks waving to
Jack”). In this case, multiple query frames are gen-
erated. In addition, temporal constraints are gener-
ated to execute all motions at the same time.

The system uses a dictionary of pairs consisting of
the verb and the corresponding method, to determine
which method should be applied.

In addition, if a gerund exists on its own in the
input text (“Neo walks to the door, waving to Jack”), a
query frame is generated for the gerund and a temporal
constraint is generated to execute the gerund and the
verb in the sentence at the same time. In this case, the
agent of the verb becomes the agent of the gerund as
well.

5.5 Locomotive Motions

Locomotive motions such as walking and running re-
quire special care, because the target position and path
vary depending on the situation and appropriate mo-
tions should be generated instead of simply executing
a motion in the database. How to generate locomotive
motions is explained in Section 6.3. In this section, we
explain how to handle locomotive motions in natural
language analysis.

As discussed in Section 8, natural language is not
suited to specifying the locomotion path. Therefore,
our system currently does not handle it and only de-
termines the target position of locomotive motions. We
categorize locomotive motions into the following types
depending on how the target position is handled.

– Moving to a target position. If the verb is a loco-
motive motion (e.g., “walk”, “run”, “go”, etc.) and
a target position is explicitly specified in the in-
put text (e.g., “Neo walks to the door.”), the query
frame includes the target position Qcontact virtical,
Qcontact horizontal and a flag indicating that this is
a locomotive motion.

10

– Entering and leaving. Sometimes the target posi-
tion is not specified in the input text. In this case, if
the verb is a specific verb, the locomotive motion is
handled as an entering or leaving motion. For exam-
ple, if the verb is “leave”, “walk away”, “disappear”,
etc., the verb is handled as a leaving motion and the
leaving position specified in the scene information is
used as the target position. The query frame also in-
cludes a flag indicating locomotive motion.

– Simple walking. If a target position is not speci-
fied and the verb represents a locomotive motion
excluding an entering or leaving motion (e.g., “Neo
walks.”), a walking motion is simply executed. In
this case, the query frame does not include a flag
indicating locomotive motion. This query frame is
handled in the same way as the other query frames.
As a result, a motion of walking forward from the
character’s current position is selected and executed.

5.6 Adverbs

Adverbs are handled in different ways depending on
the word. As explained in Section 5.2, if the adverb
represents temporal information, an appropriate tem-
poral constraint is generated. If the adverb represents
the frequency or timing of executing a verb, the adverb
is handled in the same way as infinitives and gerunds
in Section 5.4. For example, if an adverb such as “re-
peatedly”, “twice”, etc. is specified, the third option in
Section 5.4 is applied. The system has a dictionary of
adverbs for these cases. If the adverb is not found in
the dictionary, it is assigned to a query frame to search
for an appropriate motion as explained in Section 5.1.

6 Motion Search

In this section, we explain how to search for an appro-
priate motion for each verb in the input text. Handling
multiple verbs and motions is dealt with in the next
section. A query frame is generated for each verb as
explained in the previous section. Based on the query
frame, a motion is selected from the database.

6.1 Evaluation of Motion Frame

A motion frame that best matches the query frame is
searched for in the database. This search is performed
in three steps.

In the first step, all candidate motion frames in
which the motion name and agent match the query
frame are selected from the database. All motion frames

with the agent character or its base characters are po-
tential candidates.

In the second step, the motion frames whose items
do not match the query frame are excluded as candi-
dates. If the query frame has a target Qtarget ref , or
Qtarget params and/or an instrument Qinstrument ref ,
or Qinstrument params but the motion frame does not,
then it is excluded. Moreover, if a motion frame has
target parameters, instrument parameters, or the ver-
tical contact position, and the values of the query frame
exceed the specified ranges, then that motion frame is
also excluded.

In the third step, all candidate motion frames are
evaluated based on the similarity between the motion
frame and the query frame items using the following
equation:

E= w0R(Mtarget params, Qtarget params)
+w1R(Minstrument params, Qinstrument params)
+w2D(Mcontact vertical, Qcontact vertical)
+w3D(Mcontact horizontal, Qcontact horizontal)
+w4D(Mtarget direction, Qtarget direction)
+w5F (Minitial posture flag, Qinitial posture flag)
+w6A(Madverb strings, Qadverb strings)
+w7H(Magent ref , Qagent ref)

(1)

where R(M,Q), D(M,Q), F (M,Q), A(M,Q),H(M,Q)
are the functions that compute normalized distance
(0.0∼1.0) between size and weight parameters, contact
positions, posture flags, adverbs, and hierarchical posi-
tions, respectively. The distances between the size and
weight range of the motion frame and the object size
and weight of the query frame are computed so that
the distance becomes zero when the values are at the
center of the range and the distance becomes one when
the values are at the edge of the range. The distance
between posture flags is computed in such a way that
the distance is zero when they match and otherwise
the distance is one. The distance between adverbs is
computed so that the distance is zero when there is at
least one pair of matching adverb between the motion
frame and query frame and otherwise the distance is
one. The distance between hierarchical positions of the
characters is computed from the number of inheritances
between them (see Fig 5). The candidate motion frame
whose evaluation is the smallest will be selected and
used for animation. w0 ∼ w7 are weight parameters.
They can be set for each motion frame in the case that
some items are important for the motion. In our current
experiments we used 1.0 for all weights on all motions.

11

6.2 Motion Modification

The motion clip of the selected motion frame is used for
animation. However, even if the closest motion frame is
selected, the contact position may not exactly match
the query frame. In that case, the motion clip is modi-
fied using inverse kinematics. The posture of the char-
acter during the motion is modified so that the contact
position of the end-effector (e.g., hand) matches the
target position in the query frame.

When the character is far from the target, chang-
ing the end-effector position is not enough. In addition,
when the character executes the selected motion it may
need to first take an instrumental object or change its
posture (e.g., standing up). These cases are handled by
adding automatic motions before the selected motion
instead of modifying the selected motion. Automatic
motions are explained in Section 7.2 .

6.3 Locomotive Motion

When a query frame indicates a locomotive motion (see
Section 5.5), appropriate motion enabling the charac-
ter to move to the target position must be generated.
Several methods, such as [16], have been developed to
generate walking motions. In our system, the charac-
ter should not only walk, but also turn and step, in
order to move to the appropriate position and direc-
tion. Therefore, we generate locomotive motions based
on the target position and/or target direction accord-
ing to the steps below using the set of motion data that
the character has.

1. If the target direction is specified and the target po-
sition is not, an appropriate turning motion is gen-
erated. An appropriate motion based on the target
direction is selected from the motions with ‘turn’
as their motion name in the database. If only the
target direction is specified, the process stops here.

2. If the target position is specified and it is not in
front of the character, a turning motion is added in
the same way as in the first step so that the agent
faces the target position.

3. If the target position is within one step, a stepping
motion is added in the same way as the turning mo-
tion. The motion is selected from all ‘step’ motions.

4. If the target position is more than one step in the
distance, a walking motion is added. The walking
motion is repeated until the agent reaches the tar-
get position. The step length in each walking cycle
is adjusted so that the walking cycle ends at the
target position. The motion is selected from ‘walk’
motions. Currently, our system generates a straight

path to the target position even if there are obsta-
cles.

5. If the target direction is specified and it does not
match the character’s direction at the end point of
the walking motion, a turning motion is once again
added.

As explained above, the system uses the “turn”,
“step” and “walk” motions that the character has. Cur-
rently the system selects an appropriate motion and
modifies it if necessary. Alternatively, motion blending
can be used to generate more appropriate motions by
using multiple motions [16][18].

7 Motion Scheduling

In this section, we explain how our system handles mul-
tiple motions from an input text. Basically, the system
searches for a motion for each verb in the input text.
However, in order to make an animation, the execution
timing of each motion must also be determined. More-
over, the continuity of motions should be considered.
For example, when a character makes contact with an
object in the scene, the character must first move close
to the object. Our system takes care of this kind of
continuity of motions.

When multiple characters perform multiple motions
the motions should be scheduled. However, an exact
execution time for each motion is not usually specified
in the input text. In order to determine the motion
schedule, we need information about the motions such
as duration and contact information.

Our motion schedule works as follows. First, tempo-
ral constraints are extracted from input texts in addi-
tion to query frames (Section 5). Second, query frames
are roughly scheduled based on the temporal constraints
(Section 7.1). Note that at this point, only process or-
ders of query frames are determined. Finally, by search-
ing for a motion frame that matches each query frame in
order of process, the execution timing of each motion
is determined. When automatic motions are required
to be executed before a motion, they are added incre-
mentally (Section 7.2). By repeating this process for
all query frames, the motion clips and their execution
timings are determined.

7.1 Scheduling Query Frames

Based on temporal constraints, the query frames are
scheduled roughly at first. After that, the process order
of all query frames (verbs) is determined. For motions
that have a synchronized execution constraint, their

12

process orders are temporarily set as one of them being
processed first. The exact timings of all query frames
are determined in the process order.

For each query frame, a motion clip is searched from
the database as explained in Section 6.1. Before search-
ing each motion, the scene condition is set to the time
when the motion is executed because the selected mo-
tion may change depending on the position of the char-
acter or object that the motion involves. The execution
timing of the motion is determined based on the dura-
tion of the selected motion. The next motion is started
just after the previous motion is finished if they have
a serial execution constraint. If they have a synchro-
nized executing constraint, their execution timings are
determined based on the contact timings of the selected
motions.

This process is repeated from the first motion to
the last. When multiple query frames are synchronized
based on the temporal constraints, the motions for all
query frames are searched and their execution timings
are delayed until all constraints are satisfied.

7.2 Automatic Motions

During the motion scheduling and motion search, a
searched motion can sometimes not be executed. In
that case, automatic motions are generated and added
before the searched motion. As explained earlier, the
purpose of our system is to reuse motion data without
complex motion planning which may require additional
programming for each motion. Therefore, our system
deals with minimum automatic motions. The additional
motions are also selected from the database. Therefore,
each character is easily customized by adding specific
kinds of motion to the database without adding any
rules or modules.

7.2.1 Locomotive motion

If a motion includes interaction with another character
or an object in the scene (i.e., a query frame contains
a target object or character), the character has to be
in the right place to make contact with the object or
character. If not, the system automatically adds loco-
motive motions for the character to move to the right
place and to face the right direction.

If the motion frame has a contact position and tar-
get direction (e.g., “sitting on a chair” motion should
be executed in the right position and direction to the
chair), an appropriate locomotive motion is generated
so that the character approaches the right point and
turns in the right direction. The method for generating
locomotive motions explained in Section 6.3 is used. If

the motion frame has a contact position, an appropri-
ate locomotive motion is generated so that the char-
acter approaches the right point. If the motion frame
only has a direction (e.g., “shooting toward the target”
motion), the character merely turns without walking.
As explained in Section 6.3, our current system has no
path planning; the character merely moves in a straight
line to the target position.

7.2.2 Taking an instrument

When a character uses an instrument in a motion (i.e.,
a query frame contains an instrument and the charac-
ter does not hold it), the character must pick up the
instrument object before they use it. When a motion
to take the instrument is not explicit in the input text,
a ‘take’ motion is selected from the database. When
the character is away from the instrument, locomotive
motions are also added before the taking motion.

7.2.3 Changing posture

For motion searches, if there is no candidate motion
whose initial posture matches the terminal posture of
the previous motion (i.e., the initial posture of a query
frame does not match any of the candidate motion
frames), a changing posture motion such as standing
up is added. In this case, all motions that include a
state change will be candidate motions.

7.2.4 Cooperative motion

As explained in Section 4.3, when a motion involves in-
teraction with another character, a cooperative motion
of the other character follows. When a selected motion
frame has cooperative motions and any of them are not
indicated in the input text, the default cooperative mo-
tion and a temporal constraint of the motion frame are
automatically added.

8 Experiment and Discussion

We have implemented our method and motion database.
Currently, the system has six characters as shown in
Fig. 5 and about 50 motions that are collected from a
commercially available motion capture library. We have
tested our system with some short sentences and found
that an appropriate motion was selected from each sen-
tence even though the same verb is used in different sen-
tences. An example of the generated animation is avail-
able from the author’s web site (http://www.cg.ces.
kyutech.ac.jp/research/modb/index.html).

13

To evaluate our framework, we tested it with a pub-
lished movie script (The Matrix, 1999). Because our
motion database does not yet have enough data, we
checked whether our methods could handle the descrip-
tions in the movie script and output appropriate query
frames. There were about 830 actions (verbs) in the
script. We found that about 87% of these were pro-
cessed by our system without any problems. However,
4% were complex expressions that are difficult to handle
using simple rules, such as a sentence with the subject
being a character’s body (e.g., “His elbow hits the en-
emy.”, “His body jumps.”), vague representation (e.g.,
“he stares into the darkness”), indirect expression (e.g.,
“He has no answer.”), and ambiguous nouns or pro-
nouns. 4% were verbs that cannot be represented by
a motion including non-action or state verbs explained
in Section 4.2, such as “He feels that ∼”, a verb rep-
resenting a result of a motion such as “miss” in “he
shoots her and misses”. 5% were verbs representing ini-
tial states in the scene but not actions (e.g., “they are
dead”, “he stands in the room”). As discussed later, a
non-text-based interface is suitable for specifying ini-
tial states or positions of locomotion. According to the
above results, 9% of the verbs in the sample script were
actually verbs that cannot be represented as motions.
This shows that 95% of verbs that can be represented
as motion were handled by our methods. Although it
is possible to extend our semantic analysis to support
more complex expressions, this will require a great deal
of knowledge and rules, which is contrary to the aims of
this research. If a complex expression cannot be handled
by the system, the user should rephrase it as a plain ex-
pression rather than adding more knowledge and rules
to the system.

However, even if an animation is generated from a
given text, since there is limited information in an input
text, a user may not be satisfied with the motions that
are found in the database. Moreover, since we use a sim-
ple method for generating locomotive motion, motion
modification, and motion synthesis, a user may not be
satisfied with the synthesized animation. To evaluate
the effectiveness of our system, we intend conducting
a practical user study in a future work. Improvement
of motion generation and the external motion synthesis
system [20] is also a future work.

Our current system cannot handle object motions.
However, as they are also important for animation, it
is easily possible to extend our system to handle them,
as they tend to be simpler than human motions.

The fundamental principle of our framework is to
make use of motion data without requiring any addi-
tional motion specific rules. Currently, our system does
not support high-level motion planning such as auto-

matically dividing complex motion into small motions
or path planning with object avoidance. Because we
use simple rules for automatic locomotion, the result-
ing animations are not so natural. This can be solved
by adding more motion data and some sophisticated
modules that generate new motion from a number of
motion data sources such as [17][18].

Our system supposes that scene information, such
as the positions of objects and characters, is provided by
the user. The existing text-to-scene system [10] can be
integrated with our system. However, specifying the po-
sitions using natural language can be harder than using
a conventional mouse-based interface. So can specifying
locomotion path. From a practical viewpoint, a hybrid
of a text-based interface and a conventional interface
might be more useful.

With our current system, if the user is not satisfied
with or wants to change an output motion, they must
change the input text and they cannot change the out-
put motions directly. To address this, we are going to
develop a natural language-based motion editing inter-
face with which a user can change generated motions
interactively by giving instructions to agents, as real
directors do with actors.

9 Conclusion

We have proposed an animation system that generates
animation from natural language text such as movie
scripts or stories. Our future work includes the expan-
sion of both the system and the motion database. Cur-
rently, creating animations is very difficult, especially
for nonprofessionals. We believe that our system will
alleviate this and provide many creators with a means
of expressing their stories as animation.

References

1. Masaki Oshita, “Generating animation from natural language
texts and framework of motion database”, In Proc. of Interna-
tional Conference on Cyberworlds 2009, pp. 146-153, Bradford,
UK, September 2009.

2. Terry Winograd. Understanding Natural Language. Academic
Press, 1972.

3. N. Badler, R. Bindiganavale, J. Allbeck, W. Schuler, L. Zhao,
and M. Palmer. “Parameterized action representation for vir-
tual human agents”, In Embodied Conversational Agents, pp.
256-284, 2000.

4. R. Bindiganavale, W. Schuler, J. Allbeck, N. Badler, A. Joshi,
and M. Palmer. “Dynamically altering agent behaviors using
natural language instructions”, In Proc. of Autonomous Agents
2000, pp. 293-300, 2000.

5. Takenobu Tokunaga, Kotaro Funakoshi, and Hozumi Tanaka.
“K2: animated agents that understand speech commands and
perform actions”, In Proc. of 8th Pacific Rim International
Conference on Artificial Intelligence 2004, pp. 635-643, 2004.

14

6. Charles J Fillmore. The case for case. In Universals in Lin-
guistic Theory, pp. 1-88, 1968.

7. Ruqian Lu, Songmao Zhan, Automatic Generation of Com-
puter Animation: Using AI for Movie Animation, Springer,
2002.

8. Kaoru Sumi and Mizue Nagata. “Animated storytelling sys-
tem via text”, In Proc. of International Conference on Advances
in Computer Entertainment Technology, 2006.

9. Hiromi Baba, Tsukasa Noma, and Naoyuki Okada. “Visual-
ization of temporal and spatial information in natural language
descriptions”, Transaction on Information and Systems, E79-
D(5), pp. 591-599, 1996.

10. Bob Coyne and Richard Sproat. “Wordseye: an automatic
text-to-scene conversion system”, In Proc. of SIGGRAPH 2001,
pp. 487-496, 2000.

11. Sergey Levine, Christian Theobalt, Vladlen Koltun. “Real-
time prosody-driven synthesis of body language”, ACM Trans-
actions on Graphics (In Proc. of ACM SIGGRAPH Asia 2009),
Vol. 28, Issue 5, 2009. (to appear)

12. Ken Perlin, and Athomas Goldberg, “Improv: a system for
scripting interactive actors in virtual worlds”, In Proc. of SIG-
GRAPH ’96 Proceedings, pp. 205-216, 1996.

13. Matthew J. Conway. Alice: easy-to-learn 3D scripting for
novices, PhD Dissertation, University of Virginia, 1997.

14. Masaki Hayashi, Hirotada Ueda, Tsuneya Kurihara, Michi-
aki Yasumura, “TVML (TV program Making Language) - au-
tomatic TV program generation from text-based script –”, In
Proc. of Imagina ’99, pp. 84-89, 1999.

15. Hyunju Shim, Bo Gyeong Kang, “CAMEO - camera, au-
dio and motion with emotion orchestration for immersive cine-
matography”, In Proc. of International Conference on Advances
in Computer Entertainment Technology (ACE) 2008, pp. 115-
118, 2008.

16. Sang Il Park, Hyun Joon Shin, Sung Yong Shin, “On-line
locomotion generation based on motion blending”, In Proc. of
ACM SIGGRAPH Symposium on Computer Animation 2002,
pp. 105-111, 2002.

17. C. Rose, M. F. Cohen, and B. Bodenheimer. “Verbs and
adverbs: Multidimensional motion interpolation”, IEEE Com-
puter Graphics and Applications, vol. 18, no. 5, pp. 32-40, 1998.

18. Lucas Kovar and Michael Gleicher. “Automated extraction
and parameterization of motions in large data sets”, ACM
Transactions on Graphics, vol. 23, no. 3, pp. 559-568, 2004.

19. Dan Klein and Christopher D. Manning. “Fast exact infer-
ence with a factored model for natural language parsing”, In
Advances in Neural Information Processing Systems 15 (NIPS
2002), pp. 3-10, 2003.

20. Masaki Oshita. “Smart motion synthesis”, Computer Graph-
ics Forum, vol. 27, no. 7, pp. 1909-1918, 2008.

