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Abstract. We propose a method of generating avoidance motions. We use a 
motion graph to generate continuous motions, including both avoidance and 
other kinds of motions. In the combat of real humans, trained fighters avoid an 
attack with minimal movement. To realize such avoidance motion, we 
developed criteria to find an appropriate path (series of edges) in the motion 
graph. The characters are expected to move their body by only a minimal 
distance to avoid an attack. We introduced attack, body and avoidance space–
time volumes to evaluate this criterion. Each candidate path is evaluated 
according to the distance between attack and body volumes and the overlap 
between attack and avoidance volumes. We also introduced a method to control 
the execution speeds of edges, and thus adjust the timing of avoidance motions. 
Moreover, to find a path in real time, we developed methods to facilitate the 
searching process such as the use of grid-based indices to look up candidate 
paths and GPU-based quick collision detection to cull candidate paths. We 
tested our approach on an application in which a character avoids incoming 
balls controlled by a user and demonstrated the effectiveness of our approach. 
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1   Introduction 

Generating the realistic animation of combating characters, especially the generation 
of avoidance motions, is a challenge in the field of computer animation, because a 
character’s motion must vary dynamically in response to the opponent’s motion. 
Currently, many computer games that involve combat between characters generate 
character motions by selecting a suitable motion from a set of a limited number of 
precreated motions and playing that motion. In the combat of real humans, trained 
fighters avoid an attack with minimal movement. However, this kind of avoidance 
motion cannot be realized in computer animation when taking the current approach. 
The characters in computer games instead avoid an attack by taking a large step or 
making a large leap. To realize good avoidance motions as real fighters do, the system 
requires methods for organizing many avoidance motions and executing an 
appropriate motion acceding to an incoming attack at an interactive speed. 

In this paper, we propose a method to generate avoidance motions in real time by 
solving the abovementioned problems. We use a motion graph [2] to generate 
continuous motions, including both avoidance and other kinds of motion. 



A motion graph is a set of connected short motion segments (edges). It is 
constructed from a set of long motion sequences by finding similar postures in the 
input motions and converting the similar postures into nodes of the motion graph and 
converting the motion segments into directional edges. Once a motion graph is 
constructed, a continuous motion is generated by traversing edges in the motion graph 
while playing them. However, to generate meaningful motion, the system needs rules 
for choosing an appropriate next edge or a path (series of edges) from the edge 
currently being played. Many kinds of rules have been proposed, such as those 
relating to walking [2,8], interactive control by the user [11], and reactions to impacts 
[1]. However, generating avoidance motion has been a difficult challenge. 

In this research, we developed criteria to find an appropriate path (series of edges) 
in the motion graph to generate motion to avoid an incoming attack in a way similar 
to that employed by human fighters. The characters are expected to move their bodies 
only a minimal distance to avoid an attack. We introduced attack, body and avoidance 
space–time volumes to evaluate this criterion. Each candidate path (motion) is 
evaluated according to the distance between the attack and body volumes and the 
overlap between the attack and avoidance volumes. In addition, we also introduced a 
method to control execution speeds of edges, and thus adjust the timings of avoidance 
motions. Moreover, to find a path in real time, we developed methods to facilitate the 
searching process such as using grid-based indices to look up candidate paths and 
graphics processing unit (GPU)-based quick collision detection to cull candidate paths. 
We tested our approach on an application in which a character avoids incoming balls 
controlled by a user and demonstrated the effectiveness of our approach. 

The rest of this paper is organized as follows. In Section 2, we review related 
works. In Section 3, we present the flow of our method. Section 4 explains the criteria 
for evaluating candidate paths. Section 5 explains the methods employed for 
computational efficiency. Finally, Section 6 presents experimental results. 

2   Related Work 

Motion graphs [2,3,6] have been widely used in recent research. To generate motions 
using a motion graph, criteria that determine appropriate edges and an efficient 
algorithm to search for a path (series of edges) that satisfies the criteria are necessary. 
Various criteria have been proposed depending on the types of motions, as mentioned 
in Section 1. To find a path, general algorithms such as the branch and bound 
algorithm [2], reinforcement learning [4], Markov decision process control [11,5], and 
the min-max algorithm [9] are used. However, these approaches cannot be simply 
applied to our problem, because a path cannot be evaluated until it reaches the 
avoidance motion part. It is thus difficult to search for avoidance motions efficiently. 

Several research works have addressed the generation of combat or avoidance 
motion. Zordan et al. [13] employed a support vector machine, which is a pattern 
recognition technique, to select an avoidance motion according to feature vectors 
containing the position, direction and speed of an incoming attack. However, since the 
approach does not evaluate space–time conditions between the attack and avoidance 
motions, it is difficult to generate proper avoidance motion. In fact, a character 



prepares for an incoming attack but then was hit by the attack. Lee and Lee [4] 
generated attack motions based on a given target position using a motion graph. 
However, to generate avoidance motions, not only a point in space and time but also 
space–time volumes must be considered. Therefore, generating avoidance motions is 
a more difficult problem. Shum et al. [9] selected combat motions including 
avoidance, but did not consider the criteria for natural-looking avoidance motions. 
Shum et al. [10] also generated combat motions using combined attack and avoidance 
motions. However, taking this approach, each avoidance motion is coupled with a 
corresponding attack motion and avoidance motions cannot be generated for any 
incoming attack. The patterns of avoidance and attack motions are limited. Wampler 
et al. [12] proposed a framework for planning two characters’ continuous motions in 
real time. Their method also requires that the attacker’s motion be generated using the 
same method, and avoidance motion for any attack is not realized. We propose novel 
criteria to select avoidance motions from a motion graph using space–time volumes. 

3   Overview 

Our system generates a character’s avoidance motions using a motion graph that 
contains avoidance and other kinds of motions that are necessary for the application. 
Overall runtime processes are shown in Fig. 1 (a). When there is no incoming attack, 
any rules to select edges can be applied. When information of an incoming attack (its 
space–time volume) is given, our method searches for a path (series of edges in the 
motion graph) starting from the edge currently being executed to realize an avoidance 
motion. The system then executes the selected path to generate a resulting animation. 

The details of the data representation of attack volumes are explained in Section 
4.2. The space–time volume of an incoming attack can be generated in various ways 
depending on the application. In our experiment, we develop an application in which 
a user throws a ball at a character by clicking a point on the screen. In this case, an 
attack volume is generated from the half line in the virtual world corresponding to the 
clicked point on the screen. If a developer wants to generate an animation of fighting 
characters, he/she can generate the motion of an attacker using the motion graph or 
other dynamic motion-generation techniques. In this case, an attack volume can be 
generated from motion data with some additional information such as the body part 
used for the attack and the time at which the attack is supposed to hit. 

In general, a large number of possible motions can be generated from a starting 
edge. For computational efficiency, a conventional search algorithm [2,3,4,5,9,11] 
attempts to cut less promising paths as early as possible and to develop promising 
paths by evaluating the incomplete candidate paths. However, we cannot apply the 
same approach for avoidance motion because a candidate path generally cannot be 
evaluated until it reaches the avoidance motion part. Therefore, our system 
enumerates possible candidate paths that include an avoidance motion first. The 
avoidance part of each candidate path is then evaluated to select the best among all 
candidate paths. This approach requires some computational time to enumerate and 
evaluate many possible candidate paths. For computational efficiency, we developed 
several methods that are explained in Section 5.  



The process for determining a path to be executed is shown in Fig. 1 (b). When 
attack information is given, the system enumerates possible candidate paths starting 
from the current edge that have avoidance motion within a certain time window. 
Although we adjust the execution speed of each candidate path later, the timing of the 
avoidance motion is expected to be within a certain time window windowT  from the 
timing of the attack. The interval from the beginning of the path to the center of the 
avoidance part avoidt  must satisfy the following condition.  

 / 2 / 2attack window avoid attack windowt T t t T− < < + , (1) 

where attackt  is the interval from the beginning of the path to the center of the attack 
time. In our implementation, we use 1.0windowT = . By traversing all edges from the 
current edge, all possible candidate paths are enumerated. The evaluation of candidate 
paths including calculation of the execution speed of them is explained in Section 4. 

3.1   Constructing a motion graph including avoidance motions 

To construct and represent motion graphs, we use methods similar to those used in 
previous works [1,2,3,8,9]. A motion graph consists of nodes and edges. Each 
directional edge represents a short segment of motion. Each node represents a posture 
connecting adjacent edges. By traversing edges, continuous motions can be generated. 
A motion graph is constructed from a number of motion clips by analyzing them and 
identifying similar parts in them and generating edges from the similar parts. 

To realize avoidance motions, we label avoidance parts on edges in the motion 
graph. We specify avoidance parts (time intervals) in the original motion clips 
manually before constructing the motion graph; the information is inherited by the 
edges in the constructed motion graphs. During construction of the motion graph, 
each avoidance part is preserved and not divided into more than one edge. 

In addition, some information is computed automatically. Body and avoidance 
volumes and speed adjustment condition are computed for each edge. A grid-based 
index is constructed for each node. 

Input: attack information (space-time volume)

Enumerating candidate paths (series of edges)

Adjusting execution speed

Evaluation

Selecting the best candidate path

Output: a path (series of edges in motion graph)
             and execution speed

Repeating for
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(b) process for determining a path for avoidance(a) overall runtime process
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Determining a path for avoidance (see (b))
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Fig. 1. System flow. 



4   Evaluation of a candidate path 

This section describes our method of selecting a path in the motion graph from the 
candidate paths to realize avoidance motion. As explained in Section 3, possible 
candidate paths are enumerated first. The execution speed for each candidate path is 
adjusted before each candidate path is evaluated. 

4.1   Adjusting the execution speed 

The timing of the avoidance motion is expected to match exactly with the timing of an 
incoming attack. However, in general, such paths hardly exist among the limited 
number of candidate paths. To address this problem, we adjust the execution speed of 
each candidate path so that the generated motion meets the timing constraint. For each 
candidate path, the execution speeds of edges in the candidate path are determined. 

Our key insight for this process is that we change the execution speed for the part 
of the motion (edges in the motion graph) for which the change does not cause a 
noticeable problem. If part of the original motion is fast, it is considered that that part 
can be slowed down a little. On the other hand, if part of the original motion is slow, 
it is considered that that part can be sped up a little. If part of the original motion is 
still or almost still, it can be either slowed down or sped up, because neither greatly 
affects the original movement. 

When the motion graph is constructed, the system analyzes each edge and 
determines if the edge can be sped up, slowed down, both, or neither on the basis of 
the velocities of the end effectors. The velocities of four end effectors (hands and feet) 

_ /_ _ _, , ,t t t t
r hand hand r foot l footv v v v  are calculated for each frame, and the maximum 

velocity among all frames and end effectors is denoted maxv . If max fastv V> , the 
movement of the edge is determined to be fast and allowed to slow down. If 

maxslow stillV v V> > , the movement of the edge is determined to be slow and allowed to 
speed up. If max stillv V< , the movement of the edge is determined to be still and 
allowed to either speed up or slow down. , ,fast slow stillV V V  are thresholds. In our 
implementation, we set , ,fast slow stillV V V  as 0.3, 0.1, and 0.0 m/s, respectively. 

Each candidate path is adjusted so that its avoidance time and the attack time in the 
given attack information match. First, the overall scale of the speed change is 
calculated from the avoidance and attack times. Next, the speeds of edges that can be 
adjusted are scaled as shown in Fig. 2. For example, if the path must be sped up, the 
speed of all edges that are allowed to be sped up (dashed edges in Fig. 2) is scaled at 
the same ratio. We let avoidt  be the interval from the beginning of the path to the 
center of the avoidance part and attackt  be the interval to the center of the attack time 
window. The candidate path consists of adjustable edges and non-adjustable edges. 

 _ _avoid avoid adjustable avoid nonadjustablet t t= +  (2) 

The time scaling parameter times  for all the adjustable edges is computed as 



 ( )_ _/time attack avoid nonadjustable avoid adjustables t t t= − . (3) 

If there is no edge that can be adjusted in a candidate path, the path is removed from 
the set of candidate paths. To avoid too much speed adjustment that may cause 
unnatural movement, we also evaluate the adjustment ratio of speed times  as 
explained later. Our approach may result in discontinuity at transitions between scaled 
and non-scaled edges. To address this problem, smooth time warping between the 
edges or dynamic filtering ensuring continuous motion may be further applied. 

4.2   Evaluation of a candidate path 

This subsection describes our method of evaluating candidate paths. Even when the 
opponent character performs the same attack motion, appropriate avoidance motions 
in response to the attack vary depending on the relative positions and orientations of 
the characters and the defending character’s current state. An appropriate candidate 
must be chosen on the fly. As explained in Section 1, human fighters attempt to avoid 
an attack with minimal movement. We developed criteria to find such candidates. A 
character is expected to move his/her body only a minimal distance to avoid an attack. 

To realize such avoidance motion, obviously the character’s body should not be 
touched by the attack. In addition, the character should move his/her body away from 
where an incoming attack passes through immediately before the attack would hit the 
body. To evaluate these factors, we introduce attack, body and avoidance space–time 
volumes. The factors are evaluated by computing the overlap or distance between 
volumes. The attack volume is given as the input to the system. The body and 
avoidance volumes are computed from the motion graph. 

Human fighters sometimes shield or parry attacks by intentionally intercepting 
attacks with a body part. Our method does not consider such non-avoidance reactions 
to attacks and focuses on avoidance motions. 

 
Definition of attack, body and avoidance volumes. Figure 3 shows an example of 
attack, body and avoidance volumes. These volumes are space–time (four-
dimensional) volumes. The attack volume is the volume affected by the attack. The 
body volume is where the character’s body exists. The avoidance volume is where the 

attack information

candidate path
attack time window

avoidance time window

attack information

candidate path

body volume avoidance volume attack volume

 

Fig. 2. Speed control. Fig. 3. Example of volumes. 



character’s body existed a while ago, but not now. The specific definitions of these 
volumes are given in the remainder of this subsection. 

There are various ways of representing space–time volumes depending on the 
expected accuracy and efficiency. For our current implementation, we chose to use a 
set of spheres in discrete frames (1/10 seconds). We assign a number of spheres on 
the character’s skeleton manually in advance with appropriate positions and radii so 
that the spheres cover the character’s body. Using these preset spheres, the body 
volume in a frame is computed from the posture of the character. The positions of 
spheres between discrete frames are computed by interpolating two adjacent frames. 
During evaluation, overlap and distance between volumes are evaluated in discrete 
frames (1/20 seconds). The intervals between frames for volume representation and 
evaluation can be changed or be adaptive depending on the application. Especially 
when attacks are fast, smaller intervals may be necessary. The avoidance volume in 
each frame is defined as a difference between the body volume when the avoidance 
motion began and the body volume at the current time. An attack volume is given as 
an input. How to calculate attack volumes depends on the application. 

 
Evaluation of the overlap between attack and avoidance volumes. The first 
criterion is the overlap between the attack volume and the avoidance volume of the 
candidate path. The penetration of the attack volume into the avoidance volume 
during avoidance motion is computed. Since we use a set of spheres to represent the 
volumes, we compute the sum of overlaps between each pair of spheres. 
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for the i-th sphere of the attack volume and j-th sphere of the avoidance volume in 
frame t (interval of 1/20 seconds). ( )1 2,D S S  calculates the distance 
between/overlap of two spheres. If the value is positive, the spheres do not overlap 
and the value represents the distance between them. If the value is negative, the 
spheres overlap and the value represents the depth of penetration. Because the 
avoidance volume is defined as the difference between body volumes as explained 
above, the penetration depth in equation (4) is computed as follows, where t0 is the 
time when the avoidance part starts. 

 ( ) ( ) ( )0 ,, , , , ,, , ,t jt i t j t i t i t j
attack avoidance attack body attack bodyD S S D S S D S S= −  (5) 

Finally, we scale this value from 0.0 to 1.0 using a scaling parameter avoidanceE . 

 
, ,

1 /

0
avoidance avoidance avoidance avoidance

avoidance
t i j

avoidance avoidance

e E if e E
e

if e E

⎧ ′ ′− >⎪= ⎨
′ ≥⎪⎩

∑  (6) 

In experiments, it appears that the character avoids the attack when avoidancee ′  is 
greater than 0.5. Therefore, we use 0.5avoidanceE =  
 



Evaluation of the distance between attack and body volumes. The second criterion 
is the minimal distance between the attack volume and the body volume. It is 
computed as follows, where t is repeated for each frame of the candidate path. 

 ( ){ }, ,

, ,
min ,t i t j

attack bodyt i j
d D S S=  (7) 

If 0d < , the attack and body volumes overlap and the character fails to avoid the 
attack. On the other hand, if 0d > , they do not overlap. In this case, the shorter the 
distance is, the better the avoidance motion looks. However, if we simply give high 
evaluation to shorter distances, the character tries to approach the attack, even when 
the character does not have to move to avoid the attack. Therefore, we decided to give 
a high evaluation to the shorter distance when the distance is greater than that when 
the motion starts 0d , where bodyD  is a scaling parameter. 

 ( )
0

0 0 0

0

1
/

1
body body body

body

if d d
e d d D if d d d D

if d d D
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⎪= − < < +⎨
⎪ ≥ +⎩

 (8) 

 
Evaluation of the rate of adjustment of the execution speed. In addition to the two 
criteria above, the rate of adjustment of the execution speed is evaluated because it 
may cause unnatural motions. Although the allowable speed change depends on the 
motion, through our experiments, we determined that it is acceptable if the speed rate 
change is within a factor of 4 ( )4timeE = . 

 ( )
/ 1

1/ 1
time time time

timescale
time time time

s E if s
e

s E if s
⎧ >⎪= ⎨ <⎪⎩

 (9) 

 
Total evaluation. Each candidate path is evaluated according to  

 a avoidance b body t timescalee w e w e w e= + + , (10) 

where , ,a b tw w w  are weights that control the contributions of these factors, while 

avoidanceE , bodyD , and timeE  in equations (6)–(9) are determined considering each 
factor independently. In our implementation, we set all weights , ,a b tw w w  as 1.0. As 
explained in Section 3, among all candidate paths, the candidate path whose 
evaluation value is smallest is chosen and used to generate avoidance motion. 

5   Methods employed for computational efficiency 

Because the number of candidate paths can be large, enumerating and evaluating all 
candidate paths is time consuming. Therefore, we introduce a grid-based index and 



GPU-based collision detection. These are popular approaches to achieve computation 
efficiency. This section describes how we employ these approaches in our system.  

5.1   Grid-based index for candidate paths 

The most important criterion for selecting candidate paths is the overlap between 
attack and avoidance volumes. The number of candidate paths having overlap is 
limited compared with the total number of possible candidate paths. Therefore, we 
index such candidate paths using a grid-based index for each node in the motion 
graph. Without traversing the motion graph from the current edge, the candidate paths 
can be retrieved from the index of the current node according to the attack volume. If 
there is no candidate path for which the avoidance volume in the index, candidate 
paths are enumerated by traversing the motion graph as explained in Section 3.  

The grid-based index is constructed in advance for each node in the motion graph. 
The space around the character at the node is divided into a grid as shown in Fig. 4. In 
our implementation, the size of each cell in the grid is 10 cm. First, possible paths that 
start from the node and contain avoidance motion within a certain time window are 
enumerated by traversing the motion graph. Then, for each cell, all paths for which 
the avoidance volume overlaps the cell are recorded. 

During runtime, the attack volume is rotated and transformed into the local 
coordinates of the current node. Corresponding cells in the grid of the current edge are 
then determined according to the attack volume. The number of corresponding cells 
can be more than one since the attack volume is a space–time volume. 

5.2   GPU-based collision detection for culling 

Another important criterion for selecting candidate paths is the overlap between attack 
and body volumes. If they overlap on a candidate path, it means that the attack hits 
the character and the candidate paths should be removed. However, detecting the 
overlap between two volumes is time consuming. Therefore, we introduce GPU-based 
quick collision detection to cull candidates. 

We divide the space into several horizontal segments as shown in Fig. 5. For each 
segment, collision detection between volumes is computed on a two-dimensional 
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Fig. 4. Grid-based index. Fig. 5. GPU-based collision detection. 



space by drawing volumes. In our implementation, we divide the space into nine 
horizontal segments. For each segment of each edge in the motion graph, the place 
where the body volume exists during for entire edge is drawn on a texture in the local 
coordinates in advance. During runtime, the attack volume is first drawn on a texture 
for each segment. The body-volume texture of each segment is then drawn on the 
same texture by applying rotation and translation according to the character’s position 
and orientation when the edge is executed. The number of pixels of the overlap 
between attack and body volumes is counted using the GPU. When the number is 
greater than a threshold, it is expected that the attack hits the body. 

Since we discretize the space and time, this is an approximation method for 
collision detection. However, it is considered to be sufficient for quick culling. 

6   Experiments 

We implemented the proposed methods and developed an application in which a user 
throws balls at a character by clicking on the screen and the character performs an 
avoidance motion. Although our method can be used to generate animations of 
multiple characters combating each other, we developed this application of generating 
the animation of a single character avoiding given attacks so that we can test our 
methods with various inputs of attacks. When there is no attack coming, the next edge 
is determined randomly. When an attack is given by the user, an attack volume is 
created from the trajectory as explained in Section 3. Only the part of the trajectory of 
the ball that is close to the character is used to create the attack volume. An avoidance 
motion is then generated according to the attack volume. When there no valid 
candidate path is found, the character may be hit by the ball. 

For our experiments, a motion graph was constructed from motion clips of 2 
minutes and 40 seconds including 16 avoidance motions such as twisting the upper 
body, ducking, swinging at the waist, and jumping. The experiments were done on a 
standard PC with a Pentium 4 CPU, 2.5 GB RAM, and GeForce FX5700 256M GPU. 

We also implemented multi-threading to execute and search motions. When an 
attack is given, the process of finding a path for avoidance motions begins on the 
background thread. Until the path is found, the next edge is randomly selected when 
the current edge has finished being executed. The candidate paths that do not contain 
the next edge are removed from the candidates. When a path is determined, the 
background thread stops and the path is used in the thread for motion execution. 

Table 1.  Average time for selecting a candidate path. 

Condition  Time (milliseconds) 
Candidate paths in the grid  14 

With GPU-based culling No candidate path in the grid 225 
Candidate paths in the grid  18 

Without GPU-based culling No candidate path in the grid 496 



6.1   Computational time for path selection 

We measured the computational times from the time of an attack given by the user 
until the time that a path for avoidance motion is selected. In this experiment, we did 
not employ multi-threading. The measured time is that for enumerating and 
evaluating candidate paths. 

The results are presented in Table 1. As explained in Section 5.2, when there are 
candidate paths in the grid-based index, these paths are evaluated. On the other hand, 
when there is no candidate path, candidate paths are enumerated. It was about 20 
times faster to use the grid-based index, because it does not require the enumerating 
of candidates and there are fewer candidates. The average number of candidate paths 
was 5 when the grid-based index was used, while the number was 100 when the grid-
based index was not used. This explains the difference in results for the two cases. 

In our experiments, in 90% of cases, the grid-based index was used. This is 
probably because the user attempted to attack the character and clicked a point on or 
near the character. If an attack volume is away from the character, it is likely that no 
candidate is found in the grid-based index. However, in general, it is expected that 
attacks occur near a character. Employing GPU-based collision detection for culling, 
the computation was about twice as fast on average. This was effective especially 
when there was no candidate path in the grid-based index. 

The overall computational was approximately 20 to 200 milliseconds. Our method 
can be used in real-time applications employing multi-threading even when the index 
is not used. When we activate multi-threading, in 50% of cases, a path was found 
before the current edge was finished being executed. 

6.1   Evaluation of avoidance motions 

We also evaluated the quality of generated avoidance motions. In general, it is 
difficult to evaluate the naturalness of motion. In our experiment, we asked a subject 
who is a graduate student majoring in computer animation to observe all candidate 
paths and to select the one that generates the most natural-looking avoidance motion. 
We then compared whether the path selected by the subject matched the path selected 
using our method. In 90% of 40 trials, the paths matched. When they did not match, 
the major reason was that there were no good avoidance motions in the candidate 
paths and selecting the best path was difficult even for us. This is because the number 
of reachable avoidance motions in the motion graph within the time window was 
limited even though it seemed that a sufficient number of avoidance motions were 
used. We could use a wider time window. However, that may increase the 
computational time and require large speed adjustments. We constructed a standard 
motion graph in this research. We may need to develop a method to construct a 
sophisticated motion graph with which various avoidance motions can be easily 
reached from any node. This is one of our future works. Conducting extended 
evaluation including subjective evaluation by many subjects, comparison with a 
ground truth (motion capture data of combating people), and measuring the rate of 
successful avoidance are other future work. 



7   Conclusion 

We presented a method of generating avoidance motions using a motion graph. We 
proposed new criteria based on attack, avoidance and body space–time volumes. We 
also introduced methods to achieve computational efficiency. In addition to the 
method of constructing a sophisticated motion graph as mentioned in Section 6, 
development of data structures and algorithms that are more efficient such as [5] is 
future work. In general, it is difficult to select a perfect avoidance motion for any 
attack. We may need a method of modifying a selected motion according to an attack 
such as [1]. As explained in Section 4.2, human fighters sometimes shield or parry 
attacks by intentionally intercepting attacks with a body part instead of avoiding them. 
Generating these kinds of motions is also a future work. 
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