
Generating Avoidance Motion Using Motion Graph

Masaki Oshita Naoki Masaoka

Kyushu Institute of Technology
680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan

oshita@ces.kyutech.ac.jp masaoka@cg.ces.kyutech.ac.jp

Abstract. We propose a method of generating avoidance motions. We use a
motion graph to generate continuous motions, including both avoidance and
other kinds of motions. In the combat of real humans, trained fighters avoid an
attack with minimal movement. To realize such avoidance motion, we
developed criteria to find an appropriate path (series of edges) in the motion
graph. The characters are expected to move their body by only a minimal
distance to avoid an attack. We introduced attack, body and avoidance space–
time volumes to evaluate this criterion. Each candidate path is evaluated
according to the distance between attack and body volumes and the overlap
between attack and avoidance volumes. We also introduced a method to control
the execution speeds of edges, and thus adjust the timing of avoidance motions.
Moreover, to find a path in real time, we developed methods to facilitate the
searching process such as the use of grid-based indices to look up candidate
paths and GPU-based quick collision detection to cull candidate paths. We
tested our approach on an application in which a character avoids incoming
balls controlled by a user and demonstrated the effectiveness of our approach.

Keywords: avoidance motion, motion graph, space–time volume.

1 Introduction

Generating the realistic animation of combating characters, especially the generation
of avoidance motions, is a challenge in the field of computer animation, because a
character’s motion must vary dynamically in response to the opponent’s motion.
Currently, many computer games that involve combat between characters generate
character motions by selecting a suitable motion from a set of a limited number of
precreated motions and playing that motion. In the combat of real humans, trained
fighters avoid an attack with minimal movement. However, this kind of avoidance
motion cannot be realized in computer animation when taking the current approach.
The characters in computer games instead avoid an attack by taking a large step or
making a large leap. To realize good avoidance motions as real fighters do, the system
requires methods for organizing many avoidance motions and executing an
appropriate motion acceding to an incoming attack at an interactive speed.

In this paper, we propose a method to generate avoidance motions in real time by
solving the abovementioned problems. We use a motion graph [2] to generate
continuous motions, including both avoidance and other kinds of motion.

A motion graph is a set of connected short motion segments (edges). It is
constructed from a set of long motion sequences by finding similar postures in the
input motions and converting the similar postures into nodes of the motion graph and
converting the motion segments into directional edges. Once a motion graph is
constructed, a continuous motion is generated by traversing edges in the motion graph
while playing them. However, to generate meaningful motion, the system needs rules
for choosing an appropriate next edge or a path (series of edges) from the edge
currently being played. Many kinds of rules have been proposed, such as those
relating to walking [2,8], interactive control by the user [11], and reactions to impacts
[1]. However, generating avoidance motion has been a difficult challenge.

In this research, we developed criteria to find an appropriate path (series of edges)
in the motion graph to generate motion to avoid an incoming attack in a way similar
to that employed by human fighters. The characters are expected to move their bodies
only a minimal distance to avoid an attack. We introduced attack, body and avoidance
space–time volumes to evaluate this criterion. Each candidate path (motion) is
evaluated according to the distance between the attack and body volumes and the
overlap between the attack and avoidance volumes. In addition, we also introduced a
method to control execution speeds of edges, and thus adjust the timings of avoidance
motions. Moreover, to find a path in real time, we developed methods to facilitate the
searching process such as using grid-based indices to look up candidate paths and
graphics processing unit (GPU)-based quick collision detection to cull candidate paths.
We tested our approach on an application in which a character avoids incoming balls
controlled by a user and demonstrated the effectiveness of our approach.

The rest of this paper is organized as follows. In Section 2, we review related
works. In Section 3, we present the flow of our method. Section 4 explains the criteria
for evaluating candidate paths. Section 5 explains the methods employed for
computational efficiency. Finally, Section 6 presents experimental results.

2 Related Work

Motion graphs [2,3,6] have been widely used in recent research. To generate motions
using a motion graph, criteria that determine appropriate edges and an efficient
algorithm to search for a path (series of edges) that satisfies the criteria are necessary.
Various criteria have been proposed depending on the types of motions, as mentioned
in Section 1. To find a path, general algorithms such as the branch and bound
algorithm [2], reinforcement learning [4], Markov decision process control [11,5], and
the min-max algorithm [9] are used. However, these approaches cannot be simply
applied to our problem, because a path cannot be evaluated until it reaches the
avoidance motion part. It is thus difficult to search for avoidance motions efficiently.

Several research works have addressed the generation of combat or avoidance
motion. Zordan et al. [13] employed a support vector machine, which is a pattern
recognition technique, to select an avoidance motion according to feature vectors
containing the position, direction and speed of an incoming attack. However, since the
approach does not evaluate space–time conditions between the attack and avoidance
motions, it is difficult to generate proper avoidance motion. In fact, a character

prepares for an incoming attack but then was hit by the attack. Lee and Lee [4]
generated attack motions based on a given target position using a motion graph.
However, to generate avoidance motions, not only a point in space and time but also
space–time volumes must be considered. Therefore, generating avoidance motions is
a more difficult problem. Shum et al. [9] selected combat motions including
avoidance, but did not consider the criteria for natural-looking avoidance motions.
Shum et al. [10] also generated combat motions using combined attack and avoidance
motions. However, taking this approach, each avoidance motion is coupled with a
corresponding attack motion and avoidance motions cannot be generated for any
incoming attack. The patterns of avoidance and attack motions are limited. Wampler
et al. [12] proposed a framework for planning two characters’ continuous motions in
real time. Their method also requires that the attacker’s motion be generated using the
same method, and avoidance motion for any attack is not realized. We propose novel
criteria to select avoidance motions from a motion graph using space–time volumes.

3 Overview

Our system generates a character’s avoidance motions using a motion graph that
contains avoidance and other kinds of motions that are necessary for the application.
Overall runtime processes are shown in Fig. 1 (a). When there is no incoming attack,
any rules to select edges can be applied. When information of an incoming attack (its
space–time volume) is given, our method searches for a path (series of edges in the
motion graph) starting from the edge currently being executed to realize an avoidance
motion. The system then executes the selected path to generate a resulting animation.

The details of the data representation of attack volumes are explained in Section
4.2. The space–time volume of an incoming attack can be generated in various ways
depending on the application. In our experiment, we develop an application in which
a user throws a ball at a character by clicking a point on the screen. In this case, an
attack volume is generated from the half line in the virtual world corresponding to the
clicked point on the screen. If a developer wants to generate an animation of fighting
characters, he/she can generate the motion of an attacker using the motion graph or
other dynamic motion-generation techniques. In this case, an attack volume can be
generated from motion data with some additional information such as the body part
used for the attack and the time at which the attack is supposed to hit.

In general, a large number of possible motions can be generated from a starting
edge. For computational efficiency, a conventional search algorithm [2,3,4,5,9,11]
attempts to cut less promising paths as early as possible and to develop promising
paths by evaluating the incomplete candidate paths. However, we cannot apply the
same approach for avoidance motion because a candidate path generally cannot be
evaluated until it reaches the avoidance motion part. Therefore, our system
enumerates possible candidate paths that include an avoidance motion first. The
avoidance part of each candidate path is then evaluated to select the best among all
candidate paths. This approach requires some computational time to enumerate and
evaluate many possible candidate paths. For computational efficiency, we developed
several methods that are explained in Section 5.

The process for determining a path to be executed is shown in Fig. 1 (b). When
attack information is given, the system enumerates possible candidate paths starting
from the current edge that have avoidance motion within a certain time window.
Although we adjust the execution speed of each candidate path later, the timing of the
avoidance motion is expected to be within a certain time window windowT from the
timing of the attack. The interval from the beginning of the path to the center of the
avoidance part avoidt must satisfy the following condition.

 / 2 / 2attack window avoid attack windowt T t t T− < < + , (1)

where attackt is the interval from the beginning of the path to the center of the attack
time. In our implementation, we use 1.0windowT = . By traversing all edges from the
current edge, all possible candidate paths are enumerated. The evaluation of candidate
paths including calculation of the execution speed of them is explained in Section 4.

3.1 Constructing a motion graph including avoidance motions

To construct and represent motion graphs, we use methods similar to those used in
previous works [1,2,3,8,9]. A motion graph consists of nodes and edges. Each
directional edge represents a short segment of motion. Each node represents a posture
connecting adjacent edges. By traversing edges, continuous motions can be generated.
A motion graph is constructed from a number of motion clips by analyzing them and
identifying similar parts in them and generating edges from the similar parts.

To realize avoidance motions, we label avoidance parts on edges in the motion
graph. We specify avoidance parts (time intervals) in the original motion clips
manually before constructing the motion graph; the information is inherited by the
edges in the constructed motion graphs. During construction of the motion graph,
each avoidance part is preserved and not divided into more than one edge.

In addition, some information is computed automatically. Body and avoidance
volumes and speed adjustment condition are computed for each edge. A grid-based
index is constructed for each node.

Input: attack information (space-time volume)

Enumerating candidate paths (series of edges)

Adjusting execution speed

Evaluation

Selecting the best candidate path

Output: a path (series of edges in motion graph)
 and execution speed

Repeating for
each candidate path

(b) process for determining a path for avoidance(a) overall runtime process

Input: initial state and edge

Is new attack given?

Determining a path for avoidance (see (b))
and replace the current path

Animation progress based on current path

Is current path finished?

Determining a path based on application
dependent rules (any rules)

yes
no

yes
no

Fig. 1. System flow.

4 Evaluation of a candidate path

This section describes our method of selecting a path in the motion graph from the
candidate paths to realize avoidance motion. As explained in Section 3, possible
candidate paths are enumerated first. The execution speed for each candidate path is
adjusted before each candidate path is evaluated.

4.1 Adjusting the execution speed

The timing of the avoidance motion is expected to match exactly with the timing of an
incoming attack. However, in general, such paths hardly exist among the limited
number of candidate paths. To address this problem, we adjust the execution speed of
each candidate path so that the generated motion meets the timing constraint. For each
candidate path, the execution speeds of edges in the candidate path are determined.

Our key insight for this process is that we change the execution speed for the part
of the motion (edges in the motion graph) for which the change does not cause a
noticeable problem. If part of the original motion is fast, it is considered that that part
can be slowed down a little. On the other hand, if part of the original motion is slow,
it is considered that that part can be sped up a little. If part of the original motion is
still or almost still, it can be either slowed down or sped up, because neither greatly
affects the original movement.

When the motion graph is constructed, the system analyzes each edge and
determines if the edge can be sped up, slowed down, both, or neither on the basis of
the velocities of the end effectors. The velocities of four end effectors (hands and feet)

_ /_ _ _, , ,t t t t
r hand hand r foot l footv v v v are calculated for each frame, and the maximum

velocity among all frames and end effectors is denoted maxv . If max fastv V> , the
movement of the edge is determined to be fast and allowed to slow down. If

maxslow stillV v V> > , the movement of the edge is determined to be slow and allowed to
speed up. If max stillv V< , the movement of the edge is determined to be still and
allowed to either speed up or slow down. , ,fast slow stillV V V are thresholds. In our
implementation, we set , ,fast slow stillV V V as 0.3, 0.1, and 0.0 m/s, respectively.

Each candidate path is adjusted so that its avoidance time and the attack time in the
given attack information match. First, the overall scale of the speed change is
calculated from the avoidance and attack times. Next, the speeds of edges that can be
adjusted are scaled as shown in Fig. 2. For example, if the path must be sped up, the
speed of all edges that are allowed to be sped up (dashed edges in Fig. 2) is scaled at
the same ratio. We let avoidt be the interval from the beginning of the path to the
center of the avoidance part and attackt be the interval to the center of the attack time
window. The candidate path consists of adjustable edges and non-adjustable edges.

 _ _avoid avoid adjustable avoid nonadjustablet t t= + (2)

The time scaling parameter times for all the adjustable edges is computed as

 ()_ _/time attack avoid nonadjustable avoid adjustables t t t= − . (3)

If there is no edge that can be adjusted in a candidate path, the path is removed from
the set of candidate paths. To avoid too much speed adjustment that may cause
unnatural movement, we also evaluate the adjustment ratio of speed times as
explained later. Our approach may result in discontinuity at transitions between scaled
and non-scaled edges. To address this problem, smooth time warping between the
edges or dynamic filtering ensuring continuous motion may be further applied.

4.2 Evaluation of a candidate path

This subsection describes our method of evaluating candidate paths. Even when the
opponent character performs the same attack motion, appropriate avoidance motions
in response to the attack vary depending on the relative positions and orientations of
the characters and the defending character’s current state. An appropriate candidate
must be chosen on the fly. As explained in Section 1, human fighters attempt to avoid
an attack with minimal movement. We developed criteria to find such candidates. A
character is expected to move his/her body only a minimal distance to avoid an attack.

To realize such avoidance motion, obviously the character’s body should not be
touched by the attack. In addition, the character should move his/her body away from
where an incoming attack passes through immediately before the attack would hit the
body. To evaluate these factors, we introduce attack, body and avoidance space–time
volumes. The factors are evaluated by computing the overlap or distance between
volumes. The attack volume is given as the input to the system. The body and
avoidance volumes are computed from the motion graph.

Human fighters sometimes shield or parry attacks by intentionally intercepting
attacks with a body part. Our method does not consider such non-avoidance reactions
to attacks and focuses on avoidance motions.

Definition of attack, body and avoidance volumes. Figure 3 shows an example of
attack, body and avoidance volumes. These volumes are space–time (four-
dimensional) volumes. The attack volume is the volume affected by the attack. The
body volume is where the character’s body exists. The avoidance volume is where the

attack information

candidate path
attack time window

avoidance time window

attack information

candidate path

body volume avoidance volume attack volume

Fig. 2. Speed control. Fig. 3. Example of volumes.

character’s body existed a while ago, but not now. The specific definitions of these
volumes are given in the remainder of this subsection.

There are various ways of representing space–time volumes depending on the
expected accuracy and efficiency. For our current implementation, we chose to use a
set of spheres in discrete frames (1/10 seconds). We assign a number of spheres on
the character’s skeleton manually in advance with appropriate positions and radii so
that the spheres cover the character’s body. Using these preset spheres, the body
volume in a frame is computed from the posture of the character. The positions of
spheres between discrete frames are computed by interpolating two adjacent frames.
During evaluation, overlap and distance between volumes are evaluated in discrete
frames (1/20 seconds). The intervals between frames for volume representation and
evaluation can be changed or be adaptive depending on the application. Especially
when attacks are fast, smaller intervals may be necessary. The avoidance volume in
each frame is defined as a difference between the body volume when the avoidance
motion began and the body volume at the current time. An attack volume is given as
an input. How to calculate attack volumes depends on the application.

Evaluation of the overlap between attack and avoidance volumes. The first
criterion is the overlap between the attack volume and the avoidance volume of the
candidate path. The penetration of the attack volume into the avoidance volume
during avoidance motion is computed. Since we use a set of spheres to represent the
volumes, we compute the sum of overlaps between each pair of spheres.

()

() ()

, ,

, , , ,
, ,

0 , 0

, , 0

t i t j
attack avoidance

avoidance t i t j t i t j
t i j attack avoidance attack avoidance

if D S S
e

D S S t if D S S

⎧ ≥⎪′ = ⎨
− Δ <⎪⎩

∑ (4)

for the i-th sphere of the attack volume and j-th sphere of the avoidance volume in
frame t (interval of 1/20 seconds). ()1 2,D S S calculates the distance
between/overlap of two spheres. If the value is positive, the spheres do not overlap
and the value represents the distance between them. If the value is negative, the
spheres overlap and the value represents the depth of penetration. Because the
avoidance volume is defined as the difference between body volumes as explained
above, the penetration depth in equation (4) is computed as follows, where t0 is the
time when the avoidance part starts.

 () () ()0 ,, , , , ,, , ,t jt i t j t i t i t j
attack avoidance attack body attack bodyD S S D S S D S S= − (5)

Finally, we scale this value from 0.0 to 1.0 using a scaling parameter avoidanceE .

, ,

1 /

0
avoidance avoidance avoidance avoidance

avoidance
t i j

avoidance avoidance

e E if e E
e

if e E

⎧ ′ ′− >⎪= ⎨
′ ≥⎪⎩

∑ (6)

In experiments, it appears that the character avoids the attack when avoidancee ′ is
greater than 0.5. Therefore, we use 0.5avoidanceE =

Evaluation of the distance between attack and body volumes. The second criterion
is the minimal distance between the attack volume and the body volume. It is
computed as follows, where t is repeated for each frame of the candidate path.

 (){ }, ,

, ,
min ,t i t j

attack bodyt i j
d D S S= (7)

If 0d < , the attack and body volumes overlap and the character fails to avoid the
attack. On the other hand, if 0d > , they do not overlap. In this case, the shorter the
distance is, the better the avoidance motion looks. However, if we simply give high
evaluation to shorter distances, the character tries to approach the attack, even when
the character does not have to move to avoid the attack. Therefore, we decided to give
a high evaluation to the shorter distance when the distance is greater than that when
the motion starts 0d , where bodyD is a scaling parameter.

 ()
0

0 0 0

0

1
/

1
body body body

body

if d d
e d d D if d d d D

if d d D

⎧ ≤
⎪= − < < +⎨
⎪ ≥ +⎩

 (8)

Evaluation of the rate of adjustment of the execution speed. In addition to the two
criteria above, the rate of adjustment of the execution speed is evaluated because it
may cause unnatural motions. Although the allowable speed change depends on the
motion, through our experiments, we determined that it is acceptable if the speed rate
change is within a factor of 4 ()4timeE = .

 ()
/ 1

1/ 1
time time time

timescale
time time time

s E if s
e

s E if s
⎧ >⎪= ⎨ <⎪⎩

 (9)

Total evaluation. Each candidate path is evaluated according to

 a avoidance b body t timescalee w e w e w e= + + , (10)

where , ,a b tw w w are weights that control the contributions of these factors, while

avoidanceE , bodyD , and timeE in equations (6)–(9) are determined considering each
factor independently. In our implementation, we set all weights , ,a b tw w w as 1.0. As
explained in Section 3, among all candidate paths, the candidate path whose
evaluation value is smallest is chosen and used to generate avoidance motion.

5 Methods employed for computational efficiency

Because the number of candidate paths can be large, enumerating and evaluating all
candidate paths is time consuming. Therefore, we introduce a grid-based index and

GPU-based collision detection. These are popular approaches to achieve computation
efficiency. This section describes how we employ these approaches in our system.

5.1 Grid-based index for candidate paths

The most important criterion for selecting candidate paths is the overlap between
attack and avoidance volumes. The number of candidate paths having overlap is
limited compared with the total number of possible candidate paths. Therefore, we
index such candidate paths using a grid-based index for each node in the motion
graph. Without traversing the motion graph from the current edge, the candidate paths
can be retrieved from the index of the current node according to the attack volume. If
there is no candidate path for which the avoidance volume in the index, candidate
paths are enumerated by traversing the motion graph as explained in Section 3.

The grid-based index is constructed in advance for each node in the motion graph.
The space around the character at the node is divided into a grid as shown in Fig. 4. In
our implementation, the size of each cell in the grid is 10 cm. First, possible paths that
start from the node and contain avoidance motion within a certain time window are
enumerated by traversing the motion graph. Then, for each cell, all paths for which
the avoidance volume overlaps the cell are recorded.

During runtime, the attack volume is rotated and transformed into the local
coordinates of the current node. Corresponding cells in the grid of the current edge are
then determined according to the attack volume. The number of corresponding cells
can be more than one since the attack volume is a space–time volume.

5.2 GPU-based collision detection for culling

Another important criterion for selecting candidate paths is the overlap between attack
and body volumes. If they overlap on a candidate path, it means that the attack hits
the character and the candidate paths should be removed. However, detecting the
overlap between two volumes is time consuming. Therefore, we introduce GPU-based
quick collision detection to cull candidates.

We divide the space into several horizontal segments as shown in Fig. 5. For each
segment, collision detection between volumes is computed on a two-dimensional

attack volume

body volume

Fig. 4. Grid-based index. Fig. 5. GPU-based collision detection.

space by drawing volumes. In our implementation, we divide the space into nine
horizontal segments. For each segment of each edge in the motion graph, the place
where the body volume exists during for entire edge is drawn on a texture in the local
coordinates in advance. During runtime, the attack volume is first drawn on a texture
for each segment. The body-volume texture of each segment is then drawn on the
same texture by applying rotation and translation according to the character’s position
and orientation when the edge is executed. The number of pixels of the overlap
between attack and body volumes is counted using the GPU. When the number is
greater than a threshold, it is expected that the attack hits the body.

Since we discretize the space and time, this is an approximation method for
collision detection. However, it is considered to be sufficient for quick culling.

6 Experiments

We implemented the proposed methods and developed an application in which a user
throws balls at a character by clicking on the screen and the character performs an
avoidance motion. Although our method can be used to generate animations of
multiple characters combating each other, we developed this application of generating
the animation of a single character avoiding given attacks so that we can test our
methods with various inputs of attacks. When there is no attack coming, the next edge
is determined randomly. When an attack is given by the user, an attack volume is
created from the trajectory as explained in Section 3. Only the part of the trajectory of
the ball that is close to the character is used to create the attack volume. An avoidance
motion is then generated according to the attack volume. When there no valid
candidate path is found, the character may be hit by the ball.

For our experiments, a motion graph was constructed from motion clips of 2
minutes and 40 seconds including 16 avoidance motions such as twisting the upper
body, ducking, swinging at the waist, and jumping. The experiments were done on a
standard PC with a Pentium 4 CPU, 2.5 GB RAM, and GeForce FX5700 256M GPU.

We also implemented multi-threading to execute and search motions. When an
attack is given, the process of finding a path for avoidance motions begins on the
background thread. Until the path is found, the next edge is randomly selected when
the current edge has finished being executed. The candidate paths that do not contain
the next edge are removed from the candidates. When a path is determined, the
background thread stops and the path is used in the thread for motion execution.

Table 1. Average time for selecting a candidate path.

Condition Time (milliseconds)
Candidate paths in the grid 14

With GPU-based culling No candidate path in the grid 225
Candidate paths in the grid 18

Without GPU-based culling No candidate path in the grid 496

6.1 Computational time for path selection

We measured the computational times from the time of an attack given by the user
until the time that a path for avoidance motion is selected. In this experiment, we did
not employ multi-threading. The measured time is that for enumerating and
evaluating candidate paths.

The results are presented in Table 1. As explained in Section 5.2, when there are
candidate paths in the grid-based index, these paths are evaluated. On the other hand,
when there is no candidate path, candidate paths are enumerated. It was about 20
times faster to use the grid-based index, because it does not require the enumerating
of candidates and there are fewer candidates. The average number of candidate paths
was 5 when the grid-based index was used, while the number was 100 when the grid-
based index was not used. This explains the difference in results for the two cases.

In our experiments, in 90% of cases, the grid-based index was used. This is
probably because the user attempted to attack the character and clicked a point on or
near the character. If an attack volume is away from the character, it is likely that no
candidate is found in the grid-based index. However, in general, it is expected that
attacks occur near a character. Employing GPU-based collision detection for culling,
the computation was about twice as fast on average. This was effective especially
when there was no candidate path in the grid-based index.

The overall computational was approximately 20 to 200 milliseconds. Our method
can be used in real-time applications employing multi-threading even when the index
is not used. When we activate multi-threading, in 50% of cases, a path was found
before the current edge was finished being executed.

6.1 Evaluation of avoidance motions

We also evaluated the quality of generated avoidance motions. In general, it is
difficult to evaluate the naturalness of motion. In our experiment, we asked a subject
who is a graduate student majoring in computer animation to observe all candidate
paths and to select the one that generates the most natural-looking avoidance motion.
We then compared whether the path selected by the subject matched the path selected
using our method. In 90% of 40 trials, the paths matched. When they did not match,
the major reason was that there were no good avoidance motions in the candidate
paths and selecting the best path was difficult even for us. This is because the number
of reachable avoidance motions in the motion graph within the time window was
limited even though it seemed that a sufficient number of avoidance motions were
used. We could use a wider time window. However, that may increase the
computational time and require large speed adjustments. We constructed a standard
motion graph in this research. We may need to develop a method to construct a
sophisticated motion graph with which various avoidance motions can be easily
reached from any node. This is one of our future works. Conducting extended
evaluation including subjective evaluation by many subjects, comparison with a
ground truth (motion capture data of combating people), and measuring the rate of
successful avoidance are other future work.

7 Conclusion

We presented a method of generating avoidance motions using a motion graph. We
proposed new criteria based on attack, avoidance and body space–time volumes. We
also introduced methods to achieve computational efficiency. In addition to the
method of constructing a sophisticated motion graph as mentioned in Section 6,
development of data structures and algorithms that are more efficient such as [5] is
future work. In general, it is difficult to select a perfect avoidance motion for any
attack. We may need a method of modifying a selected motion according to an attack
such as [1]. As explained in Section 4.2, human fighters sometimes shield or parry
attacks by intentionally intercepting attacks with a body part instead of avoiding them.
Generating these kinds of motions is also a future work.

References

1. Okan Arikan, David A. Forsyth, James F. O'Brien. Pushing People Around. ACM
SIGGRAPH/Eurographics Symposium on Computer Animation 2005, pp. 59-66, 2005.

2. Lucas Kovar, Michael Gleicher, Frederic H. Pighin. Motion Graphs. ACM Transactions on
Graphics (SIGGRAPH 2002), 21(3), pp. 473-482, 2002.

3. Jehee Lee, Jinxiang Chai, Paul Reitsma, Jessica Hodgins, Nancy Pollard. Interactive
Control of Avatars Animated with Human Motion Data. ACM Transactions on Graphics
(SIGGRAPH 2002), 21(3), pp. 491-500, 2002.

4. Jehee Lee, Kang Hoon Lee. Precomputing Avatar Behavior from Human Motion Data.
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 79-87, 2004.

5. Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, Zoran Popović. Motion
Fields for Interactive Character Locomotion. ACM Transactions on Graphics (SIGGRAPH
Asia 2010), 29(6), Article No. 138, 2007.

6. Yan Li, Tianshu Wang, Heung-Yeung Shum. Motion Texture: A Two-Level Statistical
Model for Character Motion Synthesis. ACM Transactions on Graphics (SIGGRAPH
2002), 21(3), pp. 465-472, 2002.

7. James McCann and Nancy S. Pollard. Responsive Characters from Motion Fragments.
ACM Transactions on Graphics (SIGGRAPH 2007), 26(3), Article No. 6, 2007.

8. Paul S. A. Reitsma, Nancy S. Pollard. Evaluating Motion Graphs for Character Navigation.
ACM SIGGRAPH/Eurographcis Symposium on Computer Animation, pp. 89-98, 2004.

9. Hubert P. H. Shum, Taku Komura, Shuntaro Yamazaki. Simulating Competitive
Interactions Using Singly Captured Motions. ACM Virtual Reality Software and
Technology 2007, pp. 65-72, 2007.

10. Hubert Shum, Taku Komura, Masashi Shiraishi, Shuntaro Yamazaki, Interaction Patches
for Multi-Character Animation. ACM Transactions on Graphics (SIGGRAPH Asia 2008),
26(3), Article No. 114, 2008.

11. Adrien Treuille, Yongjoon Lee, Zoran Popović. Near-optimal Character Animation with
Continuous Control. ACM Transactions on Graphics, 26(3), Article No. 7, 2007.

12. Kevin Wampler, Erik Andersen, Evan Herbst, Yongjoon Lee, Zoran Popović. Character
Animation in Two-Player Adversarial games, ACM Transactions on Graphics (SIGGRAPH
2011), 29(3), Article No. 26, 2010.

13. Victor Zordan, Adriano Macchietto, Jose Medin, Marc Soriano, Chun-Chih Wu, Ronald
Metoyer, Robert Rose. Anticpation from Example. ACM Virtual Reality Software and
Technology 2007, pp. 81-84, 2007.

