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Abstract 
 

This paper presents a motion recognition method 

which combines Support Vector Machine (SVM) and 

state machine. We applied our method to the 

recognition of walking motions. We divide walking 

motion into five states (right leg up, right leg down, left 

leg up, left leg down, not walking). Based on subject’s 

posture that is acquired using a motion capture device, 

our method recognizes the subject’s current walking 

state as well as the subject’s walking speed. We use the 

velocity of primary body parts (hands, feet, and pelvis) 

as a feature vector. Based on a trained model, a SVM 

detects the subject’s current state. However, it is 

difficult to consider the subject’s previous states with 

SVM. Therefore, we introduced a state machine in 

which the subject’s current state is determined based 

on the previous state and the recognized state by the 

SVM. The walking speed is also computed from the 

state transition speed on the state machine. This paper 

also describes the results from some experiments that 

were made to evaluate the accuracy of our system.  

 

1. Introduction 
 

There are many applications of motion recognition 

technique such as gaming interface, monitoring systems, 

and controlling an intelligent robot. To achieve 

recognition results that are close to human’s 

recognition accuracy recognition is required. For 

example, in case of commanding a robot by user’s 

gestures, it is necessary to distinguish an intended 

gesture motion from a lot of motions. It is also 

important to detect not only user’s motion type but also 

user’s motion speed for some applications. User’s 

motion speed can be used to control the speed of 

resulting actions. For example, a character’s motion 

speed can be controlled by user’s motion speed in the 

case of using motion recognition for a gaming interface.  

In this paper, we propose a motion recognition 

technique that detects a user’s motion type and motion 

speed with high accuracy. 

  We have applied our motion recognition technique 

to detect a user’s walk-in-position motion for a motion 

capture-based avatar control system which we have 

been developing [1] (Figure 1). On this system, an 

avatar is directly controlled based on the input motion 

from a motion capture system. However, since the 

space for motion capture is usually smaller than the 

virtual world. In order to solve the problem, when the 

user walks in position, our system makes the avatar 

walk instead of making the avatar walk in position. The 

avatar’s walking speed is also controlled based on the 

user’s motion speed. The motion recognition technique 

is used to detect the user’s walk-in-position motion and 

the motion speed.  

 

 
Figure 1.     A motion capture-based avatar control 

system 

 

Our method combines Support Vector Machine 

(SVM) and a state machine. Motion is recognized by 

using SVM, and the recognition result is changed 



according to the transition condition. SVM is a 

supervised learning method has been employed for 

various applications including motion recognition. We 

use SVM to detect each state of walking motion. The 

velocities of the user’s primary body parts (hands, feet, 

and pelvis) are used as a feature vector. SVM detects 

only the current state of motion based on a feature 

vector. It is difficult to consider the user’s previous 

states. We use a state machine with the SVM to solve 

these problems. We divide walking motion into five 

states (right leg up, right leg down, left leg up, left leg 

down, not walking) as shown in Figure 2. Based on a 

user’s current state that is estimated by a SVM and the 

previous state, the state machine determines the user’s 

current state. We introduce transition constraints to 

prevent undesired state transitions. The walking speed 

is also computed from the transition speed between 

states. 

 

Right Leg Up Right Leg Down Left Leg Up Left Leg Down

No Walking

Right Leg Up Right Leg Down Left Leg Up Left Leg Down

No Walking

 
Figure 2.      State machine 

 

The rest of this paper is organized as follows. In 

Section 2 we review related works. In section 3 we 

explain the system overview and methods. The 

experimental system and results are explained in 

section 4. We discuss the future works in section 5. In 

section 6 we collect our research. 

 

2. Related Works 
 

Various methods for motion recognition have been 

studied.  

Fuzzy rule based method is a common approach. We 

have applied this approach to the recognition of walking 

motion [1]. It is necessary to tune appropriate model 

parameters to make the Fuzzy rule based method work 

well. On the other hand, SVM has good generalization 

performance which means that it works well even on 

unknown data, it is not necessary to adjust the parameter 

manually. Our experiments showed that the SVM 

achieve a better recognition result compared to the 

Fuzzy rule based method.  

Mori and Asada applied SVM for motion recognition 

[2]. They used the position and velocity of the primary 

body parts as a feature vector. They used SVM to detect 

one of three states (yes, no, neutral) for each motion 

such as walking and sitting down. They also used 

frequency features that are computed from a series of 

feature vectors in order consider the history of user input 

for motion recognition. On the other hand, we use a state 

machine for considering the history of user input. Using 

a state machine has an advantage that it can be used to 

compute user’s motion speed. 

Takahashi et al. used Hidden Markov Model (HMM) 

for recognition of person from their walking motions [3]. 

HMM is a probabilistic model which is widely applied 

to recognition of various temporal patterns including 

voice recognition. They used a pendulum model to 

represent the feet of the human body during walking 

motion. The length and angle of the pendulum model of 

feet are used as a feature vector. Compared to SVM, 

HMM has the possibility of falling into the local 

solution according to the setting of an initial value. The 

advantage of SVM can avoid the problem of trap in 

local solution. The recognition rate of SVM is higher 

than that of HMM because SVM doesn't fall into the 

local solution.  

Ikehara et al. proposed a system for hand motion 

recognition that uses a Template Matching method [4]. 

The template matching is a simple classification method. 

The feature vector of an input is compared with feature 

vectors of many sample data (templates)   and the closest 

sample is chosen. They used the positions and shape 

patterns of fingers as a feature vector. In their method, in 

order to make this method work well, the recognition 

environment must be limited or many templates must be 

prepared, because the shape of fingers varies by the 

direction of hands and the camera distance.  

No matter what recognition method we use, the 

representation of feature vector is very important. We 

use the velocities of the primary body parts as a feature 

vector. We could improve the recognition result of our 

system by adding the position and the acceleration to a 

feature vector.  However, adding irrelevant parameters 

to the feature vector could also make the recognition 

results worse. Therefore, we have to choose the 

appropriate parameters carefully. 

 

3. Motion Recognition Method 
 

3.1. System Overview 
 

We have developed a walking motion recognition 

system as shown in Figure 3. The system consists of two 

processes: learning and recognition processes.  



In the learning processing, a learning model (SVM) is 

generated based on a number of sets of a feature vector 

and a walking state that is given by hand. A feature 

vector is calculated from the posture on each frame of a 

sample motion   as explained in Section 3.2. A 

corresponding walking state for each frame is given by a 

user manually. We defied walking motion into five 

states: "right leg up", "right leg down", "left leg up", 

"left leg down", and "not walking". This labeling 

process is explained in Section 6.1. Finally, a learning 

model is computed using the sets of a labeled state and a 

feature vector (Section 3.3). 

In recognition processing, the user’s current state is 

determined based on an input posture that is acquired 

from a motion capture system in real-time. First, a 

feature vector is calculated from the user’s current 

posture in the same way that is used in the learning 

processing on each frame. Next, the user’s walking state 

is recognized using the SVM learning model of SVM 

(Section 3.3). The output state is then determined using 

a state machine according to transition conditions based 

on the recognized state by SVM and the previous state 

(Section 3.4). Finally, the walking speed is also 

computed from the transition speed on the state machine 

(Section 3.5). 
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Figure 3.   System flow 

 

3.2. Feature vector 

 
We use the velocities of primary body parts (hands, 

feet, and pelvis) as a feature vector. We use 6 velocities 

of each primary body parts in another direction: the 

lateral velocities of the hands, vertical velocities of the 

feet, and horizontal velocity of the pelvis. These 

velocities are computed in the pelvis’s local coordinates 

as shown in Figure 4.  

A feature vector is calculated from the user’s posture 

at the current frame and the previous frame. The user’s 

posture that is acquired from a motion capture device is 

represented by angles of all joints and the position and 

direction of the pelvis. The positions of the primary 

body parts are computed using a forward kinematics. 

The velocities of the body parts are then computed by 

computing the difference between the positions at the 

current frame and the positions at the previous frame. 

 

 
Figure 4.   Feature vector 

 

3.3. Support Vector Machine 
 

SVM is a classification technique used in a wide 

field such as motion recognition [2], voice recognition 

[5] and person recognition [6]. SVM is a linear 

classification method that computes a hyper plane that 

divides the feature space into two classes [7]. The 

hyper plane is computed so that the distance between 

the data and the hyper plane (margin) is maximized. 

The SVM guarantees the convergence to the optimal 

solution. SVM has an advantage that it can achieve 

good recognition results even with a high dimension of 

the feature space.  

In our implementation, we used a library for SVM, 

LIBSVM [8] that was developed by Lin. LIBSVM is 

an extension of SVM to a nonlinear multi-class 

classification.  

Since LIBSVM supports multiple classes, we assign 

each walking state to a class and train a 5-class learned 

model from sample motion data as explained in Section 

3.1.  Given a feature vector, the learned model 

determines a walking state from the five walking states. 

 

3.4. State Machine 
In order to consider user’s previous states, we 

introduce a state machine as shown in Figure 2. The 

state machine records the user’s previous state. Based on 

the previous state and the recognized state by SVM, the 

state transition is determined according to the transition 



conditions shown in Table 1. The state transits    based 

on the recognition result by SVM. When the user’s state 

changes from leg up to leg down, the speeds of the 

hands and the feet become close to zero and the SVM 

recognizes this state as not walking state. In order to 

prevent the state transiting to not walking state in this 

case, we introduce a time condition on the transition 

from leg up state to not walking state and leg down state 

to not walking state. The state does not transit to not 

walking state until the SVM keeps recognizing the state 

as not walking during a fixed time. This ensures the 

smooth transition between leg up state to leg down state. 

We use 0.3 seconds for the transition condition. 

 

Table 1. Transition condition table 

Not WalkingNot Walking 

(Passage of fixed time)

Right (Left) Leg DownOther States

Not Walking Not Walking  

(Passage of fixed time)

Right (Left) Leg UpRight (Left) Leg UpRight (Left) 

Leg Down

Right (Left) Leg UpOther States

Right (Left) Leg DownRight (Left) Leg DownRight (Left) 

Leg Up

Not Walking Other States

Left Leg UpLeft Leg Up

Right Leg UpRight Leg UpNot Walking

Current stateRecognized state by SVMLast state

Not WalkingNot Walking 

(Passage of fixed time)

Right (Left) Leg DownOther States

Not Walking Not Walking  

(Passage of fixed time)

Right (Left) Leg UpRight (Left) Leg UpRight (Left) 

Leg Down

Right (Left) Leg UpOther States

Right (Left) Leg DownRight (Left) Leg DownRight (Left) 

Leg Up

Not Walking Other States

Left Leg UpLeft Leg Up

Right Leg UpRight Leg UpNot Walking

Current stateRecognized state by SVMLast state

 
 

3.5. Computation of walking speed 

Our system computes the walking speed as the 

number of steps/sec. If necessary, we can estimate the 

walking speed m/s using an approximation of step 

distance [9].  
The walking speed (steps/sec) is computed from the 

transition times. However, if we compute the walking 

speed from the transition times of one cycle, it rapidly 

changes. To avoid this, we use an average speed that is 

computed form a few previous steps. In our experiment, 

we used five or ten previous steps. 
 

4. Experiments 
 

4.1. Labeling 
 

We developed a labeling interface for preparing 

sample data for training the SVM. Using our system, a 

user can specify the one of five walking states at any 

frame of a sample motion by pushing a corresponding 

key while watching the sample motion being played 

back. The labeling process depends on the user’s 

subjectivity. The labeled sate is stored with the feature 

vector at the same time for training SVM. The labeling 

data is also used for evaluating the recognition results on 

our experiments. The learning model is generated from a 

number of sets of labeled state and feature vector. 

 

4.2. Experiments 

 
We have done some experiments with some sample 

motion data. We used two walk-in-position motions and 

some non-walking motions for comparison. The motion 

data were captured using a magnetic motion capture 

device MotionStar from ascension tech [10]. Two walk-

in-position motions are captured from the same person. 

They are labeled in an off-line process using our system 

as explained in Section 6.1 and used to train two 

different SVMs. Our recognition method is evaluated 

with the trained SVM and the labeled data. We applied 

our method to the captured motions and evaluated if the 

recognition result matched to the manually labeled state 

on each frame. 

 

4.3. Recognition of Walking Motion 

 
This section shows the experimental result when our 

method to applied to walk-in-position motions. We 

applied a SVM trained frame a motion to the same 

motion (Section 6.3.1) and to the other motion (Section 

6.3.2). We also tested the recognition rate with or 

without the state machine. Without the state machine, 

the outputs from the SVM are compared with the labeled 

state. The recognition rates on the experiments are 

summarized in Table 2. 

 

4.3.1. Recognition of the learned walking motion. On 

experiment 1, we applied each SVM to the same motion 

that is used to train the SVM. The recognition rate was 

approximately 85 % on motion A and 87 % on motion B. 

The recognition error was caused because of the delay of 

state change when motion state changes from lowering 

the foot to not walking (standing state). 

 

4.3.2. Recognition of un-learned walking motion. On 

experiment 1, we also applied each SVM to the different 

motion with the motion that is used to train the SVM. 

The recognition rate was approximately 85% on 

application of SVM learned from motion A to motion B 

and 86% on application of SVM learned from motion B 

to motion A. This result indicates the walking motion 

not learned can be recognized in high accuracy.  

Since we captured walk-in-position motions from only 

one person, the recognition rate of another user's motion 

is not evaluated. This is a future work. 

 



4.3.3. Evaluation of state machine. On experiment 2, 

in order to evaluate the effectiveness of the state 

machine, the recognition rates of the outputs from the 

SVMs are also measured. The results showed that the 

recognition rates decreased without the sate machine. 

This is mainly caused because the recognition state 

changes to not walking state when the state changed 

from raising a foot state to lowering the foot state as 

explained in Section 3.4. Using the state machine, this 

problem was fixed and more accurate recognition rates 

were achieved.  

 

4.3.4. Comparison with Fuzzy method. The 

recognition rates of the Fuzz rule based method [1] and 

our method are compared. On experiment 3, the 

recognition rates of the outputs from Fuzzy are 

measured. On experiment 4, the recognition rates of the 

outputs from the combines Fuzzy and a state machine 

are also measured. On experiment 3 and 4, the 

recognition rate was worse than SVM. With the Fuzzy 

rule based method, appropriate parameters for Fuzzy 

rules must be turned manually. On our experiment, it 

was difficult to tune the parameters so that it achieves 

good results. Even after manual tuning, the Fuzzy rule 

based method shows lower recognition rates compared 

to SVM. 

 

Table2.    Recognition rates on the experiments 

80.7%82.1%SVM

(motion A)
2

4

3

1

Experiment no

76.6%76.8%Fuzzy 

+ State Machine

76.6%74.2%Fuzzy

83.7%83.4%SVM

(motion B)

87.1%85.8%SVM + State 

Machine

(motion B)

84.8%85%SVM + State 

Machine

(motion A)

Motion BMotion A

Recognition resultRecognition method

(sample motion)

80.7%82.1%SVM

(motion A)
2

4

3

1

Experiment no

76.6%76.8%Fuzzy 

+ State Machine

76.6%74.2%Fuzzy

83.7%83.4%SVM

(motion B)

87.1%85.8%SVM + State 

Machine

(motion B)

84.8%85%SVM + State 

Machine

(motion A)

Motion BMotion A

Recognition resultRecognition method

(sample motion)

 
 

4.4. Distinction with other motions 

 
We have applied a trained SVM to non-walking 

motions and evaluated if our method detects them as not 

walking state. We used the SVM trained with motion A. 

Some motions from a commercially available motion 

data package "rikiya" [11] was used for the experiments. 

The recognition rates are summarized in Table 3. The 

results indicate that our method works well especially 

with the state machine. 

 

Table 3.   Recognition rates of other motions 

91%100%Big jump

90%100%Striding

100%100%Sitting down

94%100%Small jump

No ConditionsWith Conditions motion ＼
transition condition

91%100%Big jump

90%100%Striding

100%100%Sitting down

94%100%Small jump

No ConditionsWith Conditions motion ＼
transition condition

 
 

4.5. Walking Speed 

 
We also tested the computation of the walking speed 

with motion B as shown in Figure 5. Horizontal axis is 

the number of steps, and vertical axis is walking speed 

(steps per second). On this experiment, the subject was 

asked to keep a constant walking speed. The three 

curves shows the walking speeds computed form the 

average transition speed on one step, five steps, and the 

ten steps. By considering many steps, the walking speed 

becomes more stable while it also causes some delay. 

Based on our experiment, using the average transition 

speed of five steps seems to be appropriate. 
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Figure 5.    Walking speed on the experiments 

 

5. Future Work 

 
One of our future works is to revise the feature vector. 

The accuracy can be improved by adding other 

parameters such as the positions of feet to the feature 

vector. Currently the SVM cannot distinguish not 

walking state and the state transiting from leg up state to 

leg down state. These states could be distinguishable by 

introducing the vertical position of the feet to the feature 

vector. However, adding irrelevant parameters to the 

feature vector could also make the recognition results 

worse. Therefore, we have to choose the appropriate 

parameters carefully. 



We are also trying to apply our method to other kinds 

of motions. Although the framework of our method is 

applied to any motion, other features may be needed to 

be introduced depending on the target motions. For 

instance, the velocities and positions of the foot and the 

waist are essential for the recognition of jump motions. 

Moreover, since motion states depend on motion types, 

state machines must be designed for each type of motion.  

The recognition of two or multiple motions 

simultaneously (for example, raising hands and walking) 

[2] is not considered on this work. We consider that this 

also can be handled by our framework by preparing 

SVMs and a state machine for each motion and making 

them work in parallel. 

 

6. Conclusions 

 
In this paper, we presented a motion recognition 

method that combines SVM and state machine. We 

applied our method to the recognition of walk-in-

position motion. The experimental results showed a high 

accuracy. Future work includes to revise the feature 

vector and to apply our method to other kinds of 

motions. 
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