
Crowd Simulation with Feedback Based on
Locomotion State

Masaki Oshita
Kyushu Institute of Technology

680-4 Kawazu, Iizuka,
Fukuoka, Japan

oshita@ai.kyutech.ac.jp

Jumpei Harazono
Kyushu Institute of Technology

680-4 Kawazu, Iizuka,
Fukuoka, Japan

harazono.jumpei403@mail.kyutech.jp

Kunio Yamamoto
Kyushu Institute of Technology

680-4 Kawazu, Iizuka,
Fukuoka, Japan

kunio@ai.kyutech.ac.jp

Abstract—Most crowd simulation methods treat each agent as
a point and simulate the movements of these points. Although
animations of virtual characters can be generated based on
the trajectories of points, the generated motions often become
unnatural. For example, an agent may change its walking
direction suddenly in the middle of a step, even though it is
impossible for humans to do so. We propose a crowd simulation
method that considers the locomotion state of an agent. When
an agent is in the middle of the step, a feedback force is applied
to the agent to prevent the agent from suddenly changing the
walking direction. However, when an agent is standing or at the
beginning of the step, the agent is allowed to change its walking
direction freely. We present experimental results and evaluate
the effectiveness of the proposed method.

Index Terms—crowd simulation, crowd animation, locomotion

I. INTRODUCTION

Crowd simulation has been used to create computer ani-
mations of virtual characters. However, most crowd simula-
tion methods treat each agent as a point and simulate the
movements of these points. Although animations of virtual
characters can be generated based on the trajectories of points,
the generated motions often become unnatural. For example,
an agent may change its walking direction suddenly in the
middle of a step, even though it is impossible for humans to do
so. Consequently, unnatural walking motion can be generated.
Although such artifacts can be reduced by post-processing,
such as inverse kinematics, the gap between the simulated
point and the generated motion becomes an issue. Such gaps
may cause collisions between the generated walking motions
of agents. Bipeds, including humans, change their walking
direction by swinging their legs toward the desired direction.
The direction of motion of the swinging leg is determined at
the beginning of the step and cannot be changed during this
step. The agent should be moved according to this type of
locomotion state.

In this study, we propose a crowd simulation method that
considers the locomotion state of an agent. Our key idea is
to adjust the velocity of the agent so that it is maintained
during the step while it is allowed to be changed at the
beginning of the step. Although our approach can be applied
to any type of crowd simulation method, in this study, we
apply it to the social force model [1], [2] which is a common

crowd simulation method. The social force model also treats
each agent as a point and simulates the movements of the
points by considering several forces that work on the agent.
We introduce a feedback force based on the locomotion state
of the agent. When an agent is in the middle of the step, a
feedback force is applied to the agent to prevent the agent from
suddenly changing the walking direction. However, when an
agent is standing or at the beginning of the step, the agent
is allowed to change its walking direction freely. We also
introduce a motion generation method based on a feed-forward
model. Instead of simply applying a walking motion to the
positions of agents computed by crowd simulation, a walking
motion is generated in such a way that the position of the
walking motion follows the position in crowd simulation. We
present experimental results and evaluate the effectiveness of
the proposed method.

The remainder of this paper is organized as follows. Section
II reviews related work. Section III provides an overview of
our proposed method. Sections IV and V describe the baseline
methods for crowd simulation and locomotion generation,
respectively. Section VI describes the feedback-force model.
Section VII presents the experimental results and a discussion.
Finally, Section VIII concludes the paper.

II. RELATED WORK

Crowd simulation is an important research topic in the field
of computer animation. Many crowd simulation methods have
been proposed [1]–[7]. Most previous methods treat each agent
as a point and simulate the movements of the points. Although
many studies have demonstrated the resulting animations of
virtual characters, they simply applied walking motions to the
simulated trajectories of agents, and the generated animations
were not natural. Some research works have employed more-
sophisticated motion-generation methods. Sakuma et. al. [8]
used a state machine that contained four states and a dozen
motions. Hughes et. al. [6] applied side-stepping motions
when they were appropriate, based on the trajectory of the
agent. Although these approaches improve the naturalness of
motions, the information of motion generation is not used in
crowd simulation, and the gap between crowd simulation and
motion generation can become an issue.

crowd simulation

motion generation

position and velocity

position and velocity

motion state, time, and pose

feedback force

and weight

motion data

Fig. 1. The system structure and data flow.

There are many methods for generating walking motions
of virtual characters [9]–[11]. They can be combined with a
crowd simulation method to generate animations of the virtual
characters. However, as explained in Section I, because the
crowd simulation method does not consider the locomotion
state, the unnatural movements of agents can be generated.

In this research, we introduce feedback from motion gener-
ation to crowd simulation to solve the problem of combining
crowd simulation and motion generation.

III. SYSTEM OVERVIEW

Our system consists of crowd simulation and motion gen-
eration, as shown in Figure 1. Because our system generates
animations of agents on the fly, it can be used for interactive
applications, such as computer games and virtual reality.

Crowd simulation and motion generation have their own
states for each agent, as shown in Figures 1 and 2. In crowd
simulation, the position ps and velocity vs are updated based
on a social force model (see Section IV). In motion generation,
position pm and velocity vm are updated to follow position
ps and velocity vs of the crowd simulation (see Section V).
An important feature of our system is the feedback from
motion generation to the crowd simulation (see Section VI).
The feedback force ffb and its weight wfb are computed based
on the locomotion state and terminal position of the current
walking cycle pt.

Motion generation uses a set of pre-created motion data,
including the body model. Although different motion data
and body models can be used for individual agents, in our
experiments, we applied the same body model and motion
data (walking and standing motions) to all the agents.

IV. CROWD SIMULATION

For crowd simulation, we applied a simple force-based
model that extends the social force model [1]. The position
ps and velocity vs of each agent were updated based on the
sum of the driving and collision avoidance forces. Each agent
has goal position pg and maximum speed parameter smax.
The velocities of the agents were controlled within the speed
limit.

control force

feedback force

terminal point of step

position in crowd simulation

position in motion generation

Fig. 2. Visualization of positions and forces in our system. The blue sphere
represent the position in crowd simulation ps. The red sphere represent the
position in motion generation pm. The green sphere represent the terminal
position of the current walking cycle pt. The control force (blue arrow) f
is computed as a sum of driving and collision avoidance forces in crowd
simulation. The feedback force (red arrow) ffb is computed based on the
terminal position of current walking cycle so that the moving direction is
maintained during the middle of walking cycle.

A driving force fd that moves the agent towards the goal
position pg is applied to the agent. First, the desired velocity
vd for moving towards the goal position pg at the maximum
speed parameter smax is computed as follows:

vd = smax

pg − ps

|pg − ps|
. (1)

The driving force (acceleration) is then computed to obtain
the desired velocity at a certain time Td according to

fd = kd
vd − vs

Td
. (2)

In our implementation, Td = 1 s. For the scale parameter kd,
kd = 1 is used.

The collision avoidance force fc which is the sum of the
repelling forces against nearby agents, is computed as:

fc =
∑
i<G

−kcR

(
|pi − ps|

dc

)
pi − ps

|pi − ps|
, R(x) = e−2x2

, (3)

where dc and kc are distance and scale parameters, respec-
tively. R(x) denotes a radial basis function. G is the group of
nearby agents within distances dc and pi denotes the positions
of nearby agents. We used dc = 2.0 and kc = 2.0. The force
to avoid collisions with obstacles and walls fo is computed in
a similar manner.

Finally, the control force f applied to the agent is computed
as

f = fd + fc + fo. (4)

The velocity vs and position ps of the agent are updated
according to the control force f and time step ∆t of the
simulation.

v′
s = vs +∆tf, p′

s = ps +∆tv′
s. (5)

With our feedback force model, in addition to the control
force f, the feedback force ffb is used. The details are
presented in Section VI.

V. LOCOMOTION GENERATION

In this section, we introduce a locomotion generation
method that uses a cycle of straightforward walking and
standing motions. This method uses two states, walking and
standing. During walking, the current pose of the walking
motion is applied to the position pm and orientation om of
the agent. The orientation of agent om is computed based on
the changes in position pm. The current pose is obtained from
the walking motion based on the current generic motion time t
(0 < t < 1), which is incremented cyclically based on velocity
vm. When each foot is in contact with the ground, inverse
kinematics is applied to the leg pose to maintain the foot in
the contact position. During standing, the current pose of the
agent was obtained from standing motion data.

We introduce a feed-forward model in which the position
pm and velocity vm in motion generation follow the position
ps and velocity vs in crowd simulation. A virtual force for
locomotion fm is computed such that position pm and velocity
vm satisfy position ps and velocity vs in a certain time window
Tm. The acceleration av that satisfies the velocity vs at Tm is
computed by:

av =
vs − vm

Tm
. (6)

The acceleration ap that satisfies position ps at Tm is computed
by

ap =
2

Tm
(ps − pm − Tmvm). (7)

The locomotion force (acceleration) fm is determined by av
and ap as follows:

fm = wpap + (1− wp)av, (8)

where blending weight wp is used to adjust the balance
between the two constraints. In our experiments, Tm = 0.5
and wp = 0.5 are used. The position pm and velocity vm are
updated based on the force fm using Equation (5).

The state of the agent is changed between walking and
standing, as follows: During walking, when the velocity is
lower than the threshold at the end of a walking cycle, the
state is changed to standing. While standing, when the position
is moved over the threshold, the state is changed to walking.
During the transition between walking and standing, the poses
of the two motions are interpolated.

Although our method can generate walking motion along a
curved trajectory, the generated motion may become unnatural
when the agent makes sharp turns or small steps, even at
the beginning of the step. Such motions can be generated by
introducing other states and motion data. Because our primary
objective was to introduce the feedback force, such extensions
of locomotion generation were not tested.

VI. FEEDBACK FORCE BASED ON LOCOMOTION STATE

This section describes the feedback force from motion
generation to the crowd simulation.

The feedback force ffb maintains the velocity of the agents.
It is computed in a manner similar to the locomotion force fm

t

0.50.0 1.0

wfb

wmax

0

0.25 0.75

Fig. 3. Walking cycle and feedback force weight function. In the middle of
step at around t=0.25 and 0.75, a stronger force is applied. At the beginning
and end of step around t=0.5 and 1.0, a weaker force is applied.

using equations (6)–(8). Instead of the position pm, velocity
vm and time Tm, the position pt, velocity vt, and time Tt of
the terminal point of the current walking cycle are used. If the
feedback force ffb becomes excessively large at the end of the
walking cycle, it is limited to the maximum speed smax.

The strength of the feedback force was adjusted based on
the locomotion state, as shown in Figure 3. In the middle of
the step, a stronger force was applied to prevent changes in
the direction of movement. At the beginning and end of the
step, a weaker force was applied so that the agent could freely
change its moving direction. The weight of the feedback force
wfb is computed using a sinus function as follows:

wfb = 0.5× wmax(1− cos(2πt)), (9)

where t is the current generic motion time (0 < t < 1) and
wmax is the maximum weight parameter. In our experiments,
wmax = 0.5 is used.

Based on the feedback force ffb and its weight wfb, the
combined force f′ is computed as:

f′ = (1− wfb)f + wfbffb. (10)

The combined force f′ is used with equation (5) to update
the position ps and velocity vs of the agent in the crowd
simulation.

By introducing this method, the average driving and colli-
sion avoidance forces decreased. To compensate for this, the
parameters for these forces, kd, kc, ko are multiplied by two.

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results. As it
is difficult to quantitatively evaluate the naturalness of the
generated motions, we present the results of crowd animation
with and without our method on several scenes and compare
them to identify the effectiveness of our method. The resulting
animations were included in the accompanying video.

First, we present the results for a scene with a small number
of agents in Figure 4. One agent moves from left to right
through two other agents that move in the opposite direction.

(a) generated animation without feedback force

(b) generated animation with feedback force

Fig. 4. Results of simulation obtained without (top) and with (bottom) our method. The series of images show the progress of two simulations (left to right).
One agent that travels from left to right passes between two agents that travel from right to left.

After the agent avoids the first opponent, the direction of
movement must be changed to avoid the second opponent.
Without the feedback force, when the agent changes direction,
the generated motion becomes unnatural. With the feedback
force, although the agent still changed its moving direction,
the naturalness of the generated motion was improved.

Second, we presented the results for a scene with a relatively
large number (approximately 30) of agents in the accompany-
ing video. Agents randomly appeared on the left or right end
of the scene and moved toward the other end of the scene. In
the resulting animations, motions similar to those in the first
scene are observed.

Using feedback force, responsiveness may be reduced in
exchange for the naturalness of motion. This can be solved by
introducing a method for predicting the movements of nearby
agents and responding to them early.

Regarding computation speed, because our method is sim-
ple, the additional computational costs for computing and
applying the feedback force are small. It is possible to animate
a large number of agents in real-time.

VIII. CONCLUSION

In this study, we proposed a crowd simulation method that
considers the locomotion state of an agent. Our key idea is to
adjust the velocity of the agent so that it is maintained during
the step while it is allowed to be changed at the beginning
of the step. Although we applied our approach to the social
force model in this study, it can also be applied to other crowd
simulation methods.

Our future work will extend our method to consider more
details of the locomotion state. Our current method uses only
the walking motion time and does not use the pose of the
agent for crowd simulation. By considering this, more precise
control is possible. The application of our approach to other

crowd simulation and motion generation methods will be
investigated in future work. In particular, a combination of
data-driven motion generation methods, such as [10], [11],
can generate more natural motions.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in-Aid for
Scientific Research (No. 21K12192) from the Japan Society
for the Promotion of Science (JSPS).

REFERENCES

[1] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,”
Physical Review E, vol. 51, no. 5, pp. 4282–4286, 1995.

[2] Y. Sun and H. Liu, “Crowd evacuation simulation method combining the
density field and social force model,” Physica A: Statistical Mechanics
and its Applications, vol. 566, p. 125652, 2021.

[3] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” ACM
Transactions on Graphics (ACM SIGGRAPH 2006), vol. 25, no. 3, pp.
1160–1168, 2006.

[4] R. Narain, A. Golas, S. Curtis, and M. C. Lin, “Aggregate dynamics
for dense crowd simulation,” ACM Transactions on Graphics (ACM
SIGGRAPH Asia 2009), vol. 28, no. 5, pp. 122:1–8, 2009.

[5] J. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics Research: The 14th International
Symposium ISRR, 2011, pp. 3–19.

[6] R. Hughes, J. Ondrej, and J. Dingliana, “Holonomic collision avoidance
for virtual crowds,” in ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA) 2014, 2014, pp. 203–111.

[7] J. Lee, J. Won, and J. Lee, “Crowd simulation by deep reinforcement
learning,” in Motion, Interaction and Games (MIG) 2018, 2018, pp.
2:1–7.

[8] S. K. Takeshi Sakuma, Tomohiko Mukai, “Psychological model for an-
imating crowded pedestrians,” Computer Animation and Virtual Worlds,
vol. 16, no. 3-4, pp. 343–351, 2005.

[9] N. Lockwood and K. Singh, “Biomechanically-inspired motion path
editing,” in Proc. of ACM SIGGRAPH/Eurographics Symposium on
Computer Animation 2011, 2011, pp. 281–287.

[10] K. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Transac-
tions on Graphics, vol. 21, no. 3, pp. 473–482, 2002.

[11] D. Holden, T. Komura, and J. Saito, “Phase-functioned neural networks
for character control,” ACM Transactions on Graphics, vol. 36, no. 4,
pp. Article No. 42, 1–13, 2017.

