
Multi-touch Interface for Character Motion Control Using Model-Based Approach

Masaki Oshita
Kyushu Institute of Technology

Iizuka, Fukuoka, Japan
Email: oshita@ces.kyutech.ac.jp

Abstract—In this paper, we propose a new method for
interactive motion control with a multi-touch interface. A user
of our system can touch and drag character’s body parts to
control its motion. The character’s full body motion is driven by
our interactive motion control model based on the movement
of a few body parts which are directly manipulated by the
user via the multi-touch interface. We propose a method for
determining 3-dimensional positions of controlled body parts
from 2-dimensional touch inputs based on the character’s
local coordinates and drag speed. We introduce a point-
based pose representation which consists of the positions or
orientations of a small number of primary body parts. Based
on the representation, we develop a motion control model that
includes modules for tracking, balance, inter-body interaction,
relaxing and self-collision avoidance. The character’s pose is
reconstructed from the point-based pose representation. We
present our experimental results to show that our framework
can realize various natural-looking motions.

Keywords-motion control; multi-touch interface; computer
animation; character animation;

I. I NTRODUCTION

Tablet computers that support multi-touch inputs have
recently become commonplace. Although many applications
control character motion in the virtual environment, most
use virtual buttons or stroke gestures for selecting actions.
Multi-touch input is a simple substitute for gamepads or
keyboards. The strengths of multi-touch are underutilized.
Using multi-touch, users should be able to control character
motion freely and intuitively rather than simply executing
predefined actions.

In theory, using inverse kinematics (IK), a user can change
a character’s pose by dragging its body part. However, this
kind of interface is not suitable for controlling a character’s
motion in interactive applications, for two primary reasons.
First, because multi-touch inputs on the screen are 2-
dimensional, 3-dimensional position and orientation of body
parts cannot be easily controlled. Second, since multiple
body parts must be moved in a coordinated way to realize
natural-looking motion, a user must control multiple body
parts, which is very difficult. For example, to execute a
punch motion, in addition to the hand, the pelvis and trunk
should also be moved.

A statistics-based model for IK (style-based IK [1]) can
be a solution for these problems. Using a large number
of example poses, natural-looking pose and motion can be

synthesized based on touch inputs. Oshita [2] applied this
approach for a multi-touch interface for motion control.
However, because different example data sets are required
for each kind of actions, this approach requires a large
number of examples and a mechanism to switch data sets
automatically. Moreover, it is difficult to execute new types
of actions whose example poses are not provided in advance.

In this paper, we propose a new method for interactive
motion control with a multi-touch interface. A user of our
system can touch and drag a character’s body parts to control
its motion. Unlike the data-based approach (the statistics-
based IK) discussed above, we take a model-based approach.
The character’s full body motion is driven by our interactive
motion control model based on the movement of a few
body parts which are directly manipulated by the user via
the multi-touch interface. Our motion control model can
perform various motions without preparing any example
poses (Figure 1).

Our method for determining 3-dimensional positions of
controlled body parts from 2-dimensional touch inputs is
based on the character’s local coordinates and drag speed.
We introduced a point-based pose representation which
consists of the positions or orientations of a small num-
ber of primary body parts (pelvis, hand, foot, trunk and
head). Based on this representation, we developed a motion
control model that includes modules for tracking, balance,
inter-body interaction, relaxing and self-collision avoidance.
The character’s pose is reconstructed from the point-based
pose representation. We present our experimental results to
show that our framework can realize various natural-looking
motions.

Even though our method can accept a number of multi-
touch inputs, in our experience it is difficult for a user to
control multiple touches simultaneously. With our method,
a user needs to control the movement of only one or a few
primary body parts to perform an action. The motion control
model then generates the full body motion accordingly.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III shows the system
overview. Sections IV, V and VI explain our methods for
pose representation, interpretation of multi-touch inputs, and
the motion control model, respectively. Section VII presents
the experimental results and discussion. Finally, Section VIII
concludes this paper.



Figure 1. Examples of interactive motion control with multi-touch interface. The red circles represent touch inputs.

II. RELATED WORK

A. Point-based Pose Representation

We used a point-based pose representation in this re-
search. Representing a pose by using points is an efficient
way to handle character motion. Jakobsen [3] represented
a character as a set of connected particles for an efficient
physics simulation. However, he did not consider recon-
structing a full body pose. Popović and Witkin [4] recon-
structed full body motion using an optimization process.
These approaches are not applicable to our research.

Similar pose representations to our method which use the
positions and orientations of primary body parts have been
used in previous research [5][6]. The difference between
these studies and our method is that they used their repre-
sentation for encoding existing motions for motion editing
or retargetting. Kulpa et al. [5] used a numerical IK for
limbs. Neff et al. [6] included the center of mass position
in the pose representation and computed the ankle joints
accordingly during pose reconstruction. We didn’t take such
approaches to avoid redundancy and achieve robust and
efficient method.

B. Motion Control Interface

There are several existing multi-touch interfaces for in-
teractive motion control. Krause et al. [7] applied conven-
tional IK to a character model based on multi-touch inputs
for animation. Kip and Nguyen [8] proposed a system to
control one arm and hand of a character using a multi-
touch interface by changing several parameters to blend arm
and hand postures. Oshita [2] applied a statistics-based IK
(style-based IK [1]). Although this approach successfully
generates natural-looking full-body pose and motion based
on multi-touch inputs, as explained in Section 1, it requires
a large number of examples and a mechanism to switch data
sets automatically. Moreover, it is difficult to execute new
types of actions whose example poses are not provided. On
the other hand, our research used a model-based approach
and our motion control model makes it possible to perform
various motions without preparing any example poses.

There are many methods for controlling a character’s
motion by using a single point or trajectory. Generating
locomotion along with a given trajectory is common [9].

However, the type of motion is limited to walking or
running. Throne et al. [10] introduced gesture-based mo-
tion selection. Based on gestures drawn along a trajectory,
their system inserts predefined motions such as a jump or
flip. Oshita [11] proposed a stroke-based motion selection
technique that chooses an appropriate action according to
the initial and terminal points of a single stroke drawn on
the screen. With these systems [10][11], users can simply
select actions but the postures and speed of the actions are
fixed and cannot be controlled. Igarashi et al. [12] proposed
a spatial keyframing animation technique. This approach
enables changing a character’s pose continuously based on
the cursor position. To use this technique, key postures must
be placed at appropriate positions depending on a specific
action.

Some systems allow a user to specify a number of trajecto-
ries and constraints for motion creation [13] and deformation
[14]. However, with these systems, the user is expected to
prioritize the inputs. Our methods uses multiple inputs and
control modules and prioritizes them automatically.

C. Motion Control Model

There are various approaches for motion control and
synthesis based on user input. A combination of physics
simulation and physics-based controllers [15][16] is one
approach. A controller determines joint torques based on
a target pose, balancing, etc. and the physics simulation
generates physically valid motions. However, designing a
stable controller is difficult and different controllers must be
designed for each kind of action.

Space-time optimization is another approach [4][17]. It
synthesizes a continuous motion based on given constraints
such as footsteps and timings so that the generated motion
minimizes an objective function that evaluates its physical
validity. However, this approach generate a motion sequence
and requires computational time. Therefore, it is difficult to
apply it for interactive motion control.

Previous researches has applied optimization (Quadratic
Programming) for computing the pose of the next frame
instead of a motion sequence [18][19] to realize interactive
motion generation. These controllers are designed for au-
tonomous control instead of user control and also require
computational time.



Multi-touch inputs

Interpretation

Motion Control

Pose Reconstruction

Constraints

Controlled Pose

Output Pose

Character Model

Target Position

Figure 2. Data flow in the proposed framework.

In contrary to these approaches, we developed a kinemat-
ics based controller. Our controller considers physics in part
but directly changes the positions and orientations of body
parts rather than using physics simulation or optimization.
Our controller is designed to move the character’s full body
naturally based on the user’s inputs.

III. SYSTEM OVERVIEW

The structure of our framework is shown in Figure 2.
We use an intermediate point-based pose representation for
motion control (controlled pose). Multi-touch inputs from
the user are interpreted and represented as constraints in the
same pose representation.

In addition to constraints for controlling the character’s
pose, when the character is moved over a certain distance,
a moving motion (step) is executed. In this case, the target
position of the moving motion is sent to the motion control
module.

The skeletal structure of the character is given to the sys-
tem in advance. It includes the information on the shape and
weight of the body parts. Shape information is necessary for
self-collision avoidance, and weight information is necessary
for balance control.

The user can also control the camera. A swipe can control
the camera direction and pinch-in and -out can control zoom
(the distance from the camera to the character).

IV. POINT-BASED POSEREPRESENTATION

Our intermediate point-based pose representationP in-
cludes pelvis positionppelvis, hand positionspr hand,
pl hand, foot positionspr foot, pl foot, trunk orientation
qtrunk and head orientationqhead; 5 positions and 2 orien-
tations. All positions and orientations are represented in the
absolute (world) coordinates.

In general, there are several ways to represent a rotation
such as quaternion, axis-angle,3×3 matrix and Euler angles.
Although any of these can be used with our method, in
the following explanation, we treat them as3 × 3 matrices
such that the product of two rotationsqbqa equates to the
combination of two rotations.q−1 represents the inverse of

Conventional

Pose Representation

Our Point-based

Pose Representation

Figure 3. Pose representation. A blue rectangle represents a position and
a read circle represents a rotation (orientation).

the rotation. In this paper,|q| represents rotational angle and
wq represents scaling of the rotational angle.

A. Pose Reconstruction

The character’s output poseX is represented by the
position and orientation of the pelvis and rotations for
all joints asX = {ppelvis,qpelvis,qi(i = 1...n)} where
n is the number of joints. Our method reconstructs this
output pose from our intermediate pose representationP =
{ppelvis,pr hand,pl hand,pr foot,pl foot,qtrunk,qhead}.
Figure 3 shows the difference between the conventional
pose representation and our point-based pose representation.
The pose reconstruction follows 4 steps:

1) Pose Reconstruction for Pelvis Position, Pelvis Orien-
tation and Back Joints:The pelvis position of the interme-
diate representation is simply used for the pelvis position
ppelvis.

Pelvis orientation and back joint rotations are computed
from trunk orientationqtrunk. The number of back joints
depends on the skeleton model. In general, the back joint
rotations can be computed from the total rotation of the back
joints by distributing the total rotation to each back joint in
specific ratios [20]. Our method determines pelvis orienta-
tion in addition to the back joint rotations. We divide the
trunk orientation into horizontal rotationqtrunk h(1DOF)
and front-back and right-left rotationsqtrunk v(2DOF). The
horizontal rotation is assigned to pelvis orientation. The
other rotations are distributed into pelvis orientation and
back joints with a specific weightwpelvis back ratio.

qtrunk = qtrunk vqtrunk h (1)

qpelvis = ((wpelvis back ratio)qtrunk v)qtrunk h (2)

qi(back) = (1− wpelvis back ratio)qtrunk v (3)

wherewq represents a scaling of rotation angle.
In our implementation, we usewpelvis back ratio = 0.5.

If the skeleton model consists of more than one back joint,
the total back rotationpi(back) can be further distributed to
each back joint with specific weights [20].



q

q

q

qp shoulder

elbow

wrist

ee ee

selbow

Figure 4. Analytical inverse kinematics for a limb.

2) Pose Reconstruction for Neck Joints:The neck joint
rotations are computed from trunk and head orientations.

qi(neck) = qhead(qtrunk)
−1 (4)

3) Pose Reconstruction for Limb Joints:After the pelvis
and trunk states are determined, limb joints rotations are
computed from the end-effector (hand or foot) position. In
the followings explanation, we take the case of an arm to
make the explanation easier, although the same method is
applied to legs too.

In general, as shown in Figure 4, an analytical IK [21]
determines the rotation of limb joints (3DOF shoulder joint
qshoulder, 1DOF elbow jointqelbow and 3DOF wrist joint
qwrist) based on the relative position and orientation of the
end-effector from the shoulderpee, qee and swivel angle of
the elbowselbow. Since we determined the wrist angle joint
rotations differently as explained in the next subsection, if
we focus on shoulder (3DOF) and elbow (1DOF) joints,
their rotations can be determined based on hand position
pee (3DOF) and swivel angleselbow(1DOF).

How swivel angle is determined is important. If analytical
IK is used for changing an existing pose, the swivel angle
of the original pose can be retained. Because of the need
to generate arbitrary poses in our case, such an approach is
not applicable. It is known that the swivel angle depends on
the end-effector position [22]. Therefore, we determined the
swivel angle from the hand position based on examples that
are prepared in advance.

We prepared sets of normalized relative hand positions
and swivel angles as examples. Given a hand position, we
blend nearby samples to determine swivel angle. We use
Radial Basis Function (RBF) to compute the weight of each
example depending on hand position.

selbow =
∑

fi(pee)si (5)

fi(p) = exp(−(|pi − pee|/ri)2) (if |pi − pee| < ri) (6)

where fi(p) is the RBF for each example{pi, si, ri}. In
our implementation, we use about 10 examples for each limb
which are tuned manually. Alternatively, it is possible to use
motion capture data to create more accurate samples.

Although we used example data here, because these
examples are common for all types of poses and actions, it is

Figure 5. Examples of swivel angles.

not necessary to prepare separate sets of examples for each
type of action, unlike a statistics-based posture synthesis
[1][2].

Figure 5 shows poses that are generated from the exam-
ples. The colors represent the weights computed from the
hand position. Note that each example has a swivel angle
and not a pose.

4) Pose Reconstruction for Hand and Foot Joints:Since
we do not use hand and foot orientations, wrist and ankle ro-
tationspwrist, pankle are determined automatically. Unless
the character is performing a gesture or holding an object
in the environment, neither is considered in our system, it is
natural to keep the wrist and foot rotations in the rest pose.
Therefore, we simply set the joint rotation to zero after limb
joint rotation is determined.

When an end-effector (typically foot) is contacting the
ground, the foot must be kept horizontal. Also, when the foot
is near the ground, the ankle joint must be flexed or extended
to prevent the foot from penetrating into the ground. Similar
to trunk orientation control, ankle rotation is set, when the
foot is near or on the ground.

V. I NTERPRETATION OFMULTI -TOUCH INPUTS

In this section, we explain how to interpret multi-touch
inputs to determine constraints in the point-based pose
representation form. A user can touch and drag the pelvis,
hand, foot, trunk and head of the character. Since we use
multi-touch inputs, multiple body parts can be touched and
dragged at the same time. In this paper, we did not take
inputs on the middle of limbs (e.g. upper arm, forearm,
elbow, etc.); limbs can be controlled only by moving the end-
effectors (hand and foot). Although a person has 10 fingers,
from our experience, we can control at most two or three
touches at the same time. Therefore, the limited number
of controllable body parts in our method is considered
reasonable.

Our method treats each touch input as the spatial trans-
lation of the touched body part. The biggest challenge is
how to determine 3-dimensional positions of controlled body



XY-plane
YZ-plane

x

y

z

touch input on the 2D screen

translation in the 3D scene

touch line

translation on

the hyper plane

translation in

the perpendicular 

direction

Figure 6. Touch interpretation.

parts. When a user touches and drags a body part on the
2-dimensional screen, the touched position on the screen
represents a line in the 3-dimensional scene. There is no
simple way to determine a unique point on the line.

We solved this problem by introducing several assump-
tions. First, when a person performs motions, the pelvis,
hand and foot are generally moved in either front-back or
right-left direction relative to the person. For example, for
punch and kick motions, the body parts are moved in the
front-back direction. For a waving hand and arm extending
motion, the body parts are moved in the right-left direction.
Although some complex motions include movements in
combinations of both front-back and left-right directions, in
many cases the body parts are moved on one plane. We
determined in which plane the touched body part should
be moved depending on the character’s orientation and the
camera direction.

A second assumption is to move the selected body part
(hand or foot) in a perpendicular direction to the screen.
When a hand or foot is moved away from the trunk on
the screen, there is not much freedom of movement in the
perpendicular direction, because arm and leg lengths are
limited. However, when the hand or foot is moved toward
or near the trunk, it may be moved in the perpendicular di-
rection. When the hand or foot is moved toward the camera,
it is likely that they are dynamic motions such as a punch
or kick which would require quick movement. Therefore,
the resultant translation in the perpendicular direction is
based on the speed of the body part being controlled by
the user. Although this may not be the case all of the time,
we consider that this is a reasonable assumption.

In addition to these assumptions, self-collision avoidance
is considered. For example, when a hand is moved toward
the trunk on a plane that crosses the trunk, the arm can
penetrate into the trunk. In this case, the hand position
is adjusted to a position where such penetration does not
happen.

A. Translation of Pelvis, Hand and Foot

Based on the above approach, we determined the target
position of pelvis, hand or foot as follows:

1) Translation on a Hyper Plane:Based on the first
assumption above, when a body part (pelvis, hand or foot)
is touched and dragged on the screen, it is moved on either
the XY, ZX or YZ hyper plane which is defined by the local
coordinates of the character as shown in Figure 6.

X, Y and Z axes are determined based on pelvis ori-
entation. Y axis is always (0, 1, 0), while X and Z axes
are determined from the horizontal pelvis orientation. Then,
among these axes, the one whose inner product with the
camera vector (camera direction)dcamera is the largest is
chosen as the normal vector that defines the hyper plane. The
hyper plane is defined by the normal vectorn and the current
position of the controlled body partpcurrent as follows

n(p− pcurrent) = 0 (7)

The touch line where the controlled body part exist is
defined as follows

p = tdtouch + pcamera (8)

wheredtouch is the normalized vector from the camera to
the touch point andpcamera is the camera position. From
equations (7) and (8), the target position of the controlled
body part on the hyper plane is computed.

2) Translation in the Perpendicular Direction:Based on
the second assumption above, position is adjusted in the
direction perpendicular to the screen. This adjustment is
applied to end-effectors (hand and foot) but not to the pelvis.
When the speed of a dragged end-effector is faster than the
threshold, its position is adjusted in proportion to speed.

There are two directions for the perpendicular vector. The
body part should be moved forward from the character. The
moving direction vectordforward is determined as follows.

dforward =
dtouch (if dz axis · dtouch > cos45◦)
−dtouch (if dz axis · dtouch < cos45◦)
0 (otherwise)

(9)
where dz axis is the Z axis of the character’s pelvis.
Although it is possible to apply this translation on any
camera direction in theory, throughout our tests, we found
that it does not work well when the body parts are moved
on the YZ plane (when the camera is on the side of the
character). Therefore, we limit this control when the angle
betweendz axis anddtouch is less than45◦.

The position of the end-effector is adjusted in the direction
of dforward based on the velocity of the end-effectorv.

p′ = p+
|v| − vth

vs
dforward (if |v| > vth) (10)



wherevth, vs are the threshold and scaling parameters. We
tuned those parameters empirically. In our implementation,
we usevth = 1.0 andvs = 0.2.

3) Translation for Self-collision Avoidance:Finally, the
end-effector is moved in the same perpendicular direction to
avoid self-collision.

The distances between the controlled end-effector and
other body parts are computed. If the distance is below a
threshold, the position is adjusted using the similar equation
to equation (10).

p′ = p+ kdforward (11)

In this case, the scaling parameterk is computed based on
the distance and the threshold.

For collision detection and distance computation between
body segments, any existing method can be used. The
method for representing the shapes of body segments is
also flexible. A simplified representation such as a bounding
box or ellipsoid makes distance computation easier. In
our implementation, we represented each body part as an
oriented bounding box [23].

B. Rotation of Trunk and Head

Because we use the rotations of the trunk and head in
our point-based pose representation, we interpreted the touch
and drag of a point on a body part as their rotation.

The translation of the touched point of the trunk or head
is computed the same way as the computation for pelvis
translationp′

touched. The touched point on the body depends
on the point where the user touches first. Based on the
translation of the touched point, the trunk rotation that
satisfies it is computed∆qtrunk as follows.

(p′
touched − pback) = ∆qtrunk(ptouched − pback) (12)

whereptouched is the initial position of the touched point
without trunk rotation andpback is the back joint position.
Because the touched point is on the surface of the character’s
body, when the touched body is moved downward on the
screen, the character bends forward, and when the touched
body is moved upward on the screen, it bends backward.

C. Execution of Moving Motion

As explained in Section III, when the pelvis is moved
over a large distance, this is interpreted as moving in a step
and the target position is computed.

Figure 7 shows the touch interpretation for the pelvis.
The horizontal movement of the pelvis is limited within
the support polygon computed from foot positions (see
Section VI-B). Vertical movement of the pelvis is limited
by leg length and minimum duck height. When the pelvis
is moved within this range, the input is interpreted as pelvis
translation. When the pelvis is moved outside this range, the

pelvis

translation

moving motion

(step)

Figure 7. Touch interpretation for the pelvis.

input is interpreted as moving motion (step) and the target
position is computed.

The target positionpmove is computed by computing
the crossing point of the viewing vector with the plane
that is parallel to the ground and crosses the pelvis of the
character. To keep the step distance within a reasonable
range, the distance betweenpmove and the current pelvis
position is limited within a specific range (0.5m∼ 0.8m in
our implementation). Note that up-down touch movement on
the screen controls front-back step direction.

VI. M OTION CONTROL MODEL

In this section, we describe our motion control model that
determines the output posePoutput based on the constraints
from multi-touch inputsPinput and the previous posePprev.
These are represented by the intermediate point-based pose
representation described in Section IV.

Our motion control model includes several modules and
each of them determines an output pose. The output pose is
computed by blending the results of all modules.

Poutput = (
∑ wi∑

wi
Pi) (13)

wherePi, wi are the output pose and weight of each control
module andi = tracking, balance, interbody interaction,
relaxing and selfcollision avoidance. Note that all modules
may not determine all parameters. For example, when there
is no user input, the tracking control does not produce its
output pose and weight. High priority is given to tracking,
balance and self collision avoidance while low priority is
given to inter body interaction and relaxing.

The concepts behind our each control module are not new.
We designed these models based on our intermediate point-
based pose representation. Our models directly change po-
sitions and orientation rather than using physics simulation.
We introduced simple approximations and parameters for
these modules. We argue that our framework is very simple
and easy to implement, but also powerful and flexible.

In the remainder of this section, we briefly describe our
approach for implementing each controller.



A. Tracking Control

Tracking control is for satisfying input constraints from
the multi-touch interface. The output of the tracking control
module Ptracking uses input constraints asPtracking =
Pinput.

When an end-effector (hand or foot) is controlled by the
user and the target position is within the reachable range of
the limb, only the end-effector position is changed. However,
when the target position is outside of the reachable range,
the pelvis and the trunk should be moved to reach the target
position. In such case, the pelvis positionppelvis and the
trunk orientationqtrunk are changed accordingly.

Also, while an end-effector (foot) is contacting the
ground, tracking control keeps the current foot position.

B. Balance Control

Balance control maintains the balance of the character.
Our balance control module controls pelvis position and
trunk orientation to keep the projection of the center of mass
of the character within its support polygon.

The translation of the upper body (position of the pelvis)
∆ppelvis and the rotation of the upper body (orientation of
the trunk)∆qtrunk are computed to move the center of mass
within the support polygon∆pcom, when it is found to be
outside the support polygon.

M∆ppelvis = wpelvis∆pcom (14)

M∆qtrunk × (ptrunk − pback) = wtrunk∆pcom (15)

where M is the total mass of upper body. The required
translation of the center of mass∆pcom is distributed
to the translation of the pelvis positionppelvis and the
orientation of the trunkqtrunk with a specific ratiowpelvis

: wtrunk = wpelvis trunk ratio : 1−wpelvis trunk ratio. In
our implementation, we usewpelvis trunk ratio = 0.5.

C. Inter-Body Interaction Control

This control is for simulating the physical interface be-
tween connected body parts. When a person moves his or
her body part (e.g. an arm), any connected body part (e.g.
trunk) also moves a little even if he or she tries to keep it still
because there is physical influence between the connected
body parts.

This module controls trunk orientation based on the
velocities of end-effectors and the positions of end-effectors
based on the velocity of the trunk. Because it is difficult
to simulate this kind of effect accurately even with physics
simulation, because it also requires realistic muscle stiffness
models, we chose to scale the velocities of connected body
parts.

D. Relaxing Control

Relaxing control is for moving the body parts to the
rest pose when there is no user input. We introduced this
module because it looks unnatural if the character stops in
an unnatural pose. This module keeps the trunk vertical,
lowers arms and legs, and maintains the head elevation
within certain limits.

E. Self-Collision Avoidance Control

Self-collision avoidance requires care because we cannot
know if self-collision will occur until the output pose is
computed. Therefore, an interim output pose is computed
without self-collision avoidance. If there is any self-collision,
this control is then applied repeatedly until on self-collision
problem exists.

F. Step Motion Control

When a step is executed and its target position is sent
from the interface module, the motion control generates a
step motion. In our implementation, we used a similar model
to that to that used by [24]. During action control, the pelvis
and feet are controlled based on a procedural action model.
The full body motion is automatically generated by our
motion control framework.

VII. R ESULTS AND DISCUSSION

We have implemented our interface and tested it. Some
of the resulting motions are shown in Figure 1 and the
accompanying video. Various simple actions such as posing,
reaching, stepping, gestures (nodding, pointing, waving),
fighting actions (punch, kick) and combinations can be
created by using our interface. As explained in Section I,
even though our method can take multi-touch inputs, it is
difficult for a user to control many parts simultaneously.
Based on our experiments, we found that using one to three
touches at the same time is enough when performing typical
actions. Each action typically has one primary limb (e.g. an
arm for punch). One touch can be used to control its end-
effector. Also, one touch can be used to control the body
(pelvis and/or trunk). The rest of the body is driven by our
motion control model.

Using our interface, the user can make his or her avatar
perform their own actions. This will be useful in many
applications such as communication in virtual environments
using avatars or fighting games. Conversely, performing all
motions using our interface may not be realistic. Making
a combination of our interface and conventional interfaces
available and allowing users to choose may be a more
practical option.

There are limitations in our interface. Control is focused
on the pose of a standing character and performing moving
motions other than stepping was not considered in this
paper. There are existing methods for such movement control
[9][10] and our system can be integrated with these.



Because of the constraints of using inputs on a 2-
dimensional screen, it is not possible to control which
direction the character is facing, because the touch inputs are
interpreted as translation or tilt of the controlled body parts
and rotation is not considered. It may be possible to extend
our system to include different methods of interpretation or
to make it possible to switch between different interfaces.
However, such extension makes the interface more compli-
cated. Seeking a balance between freedom of control and
usability is an important area for future research. Although
our motion control model takes physics into account, it is
not driven by physics simulation and may not always be
physically correct. For example, pose and motion is limited
so that the character never falls. We believe hat this is a
reasonable constraint, but a user may want the character to
perform a falling motion.

VIII. C ONCLUSION

In this paper, we proposed a framework for controlling
a character using a multi-touch interface. Although our
framework is very simple, various kinds of motions can be
realized using our interface without using any examples. Our
interface is easy to implement and can be used by many
tablet computers.

REFERENCES

[1] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović,
“Style-based inverse kinematics,”ACM Transactions on
Graphics, vol. 23, no. 3, pp. 522–531, 2004.

[2] M. Oshita, “Multi-touch interface for character motion control
using example-based posture synthesis,” inInternational Con-
ference on Computer Graphics, Visualization and Computer
Vision (WSCG) 2012), 2012, pp. 213–222.

[3] T. Jakobsen, “Advanced character physics,” inProceedings of
Game Developer’s Conference 2001, 2001.

[4] Z. Popovíc and A. Witkin, “Physically based motion trans-
formation,” in SIGGRAPH 1999, 1999, pp. 11–20.

[5] R. Kulpa, F. Multon, and B. Arnaldi, “Morphology-
independent representation of motions for interactive human-
like animation,” Computer Graphics Forum (Eurographics
2005), vol. 24, no. 3, pp. 343–352, 2005.

[6] M. Neff and Y. Kim, “Interactive editing of motion style using
drives and correlations,” inEurographics/ACM SIGGRAPH
Symposium on Computer Animation 2009, 2009, pp. 103–
112.

[7] M. Krause, M. Herrlich, L. Schwarten, J. Teichert, and
B. Walther-Franks, “Multitouch motion capturing,” inACM
International Conference on Interactive Tabletops and Sur-
faces 2008, 2008, p. 2.

[8] M. Kipp and Q. Nguyen, “Multitouch puppetry: Creating
coordinated 3d motion for an articulated arm,” inACM In-
ternational Conference on Interactive Tabletops and Surfaces
2010, 2010, pp. 147–156.

[9] S. I. Park, H. J. Shin, and S. Y. Shin, “On-line locomotion
generation based on motion blending,” inACM SIGGRAPH
Symposium on Computer Animation 2002, 2002, pp. 105–111.

[10] M. Thorne, D. Burke, and M. van de Panne, “Motion doodles:
An interface for sketching character motion,”ACM Trans-
actions of Graphics (SIGGRAPH 2004), vol. 23, no. 3, pp.
424–431, 2004.

[11] M. Oshita, “Motion control with strokes,”Computer Anima-
tion and Virtual Worlds, vol. 16, no. 3-4, pp. 237–244, 2005.

[12] T. Igarashi, T. Moscovich, and J. F. Hughes, “Spatial keyfram-
ing for performance-driven animation,” inACM SIGGRAPH
/ Eurographics Symposium on Computer Animation 2005,
2005, pp. 253–258.

[13] M. Dontcheva, G. Yngve, and Z. Popović, “Layerd acting for
character animation,” inSIGGRAPH 2003, 2003, pp. 409–
416.

[14] B. L. Callennec and R. Boulic, “Interactive motion deforma-
tion with prioritized constraints,”Graphical Models, vol. 68,
no. 2, pp. 175–193, 2006.

[15] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien,
“Animating human athletes,” inSIGGRAPH ’95, 1995, pp.
71–78.

[16] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Com-
posable controllers for physics-based character animation,” in
SIGGRAPH 2001, 2001, pp. 251–260.

[17] C. K. Liu and Z. Popovíc, “Synthesis of complex dynamic
character motion from simple animations,”ACM Transactions
on Graphics (SIGGRAPH 2002), vol. 21, no. 3, pp. 408–416,
2002.

[18] S. Jain, Y. Ye, and C. K. Liu, “Optimization-based interactive
motion synthesis,”ACM Transactions on Graphics, vol. 28,
no. 1, p. Article No. 10, 2009.

[19] A. Macchietto, V. Zordan, and C. R. Shelton, “Momentum
control for balance,”ACM Transactions of Graphics (SIG-
GRAPH 2009), vol. 28, no. 3, p. Article No. 80, 2009.

[20] G. Monheit and N. I. Badler, “A kinematic model of the
human spine and torso,”IEEE Computer Graphics and Ap-
plications, vol. 11, no. 2, pp. 29–38, 1991.

[21] D. Tolani, A. Goswami, and N. I. Badler, “Real-time inverse
kinematics techniques for anthropomorphic limbs,”Graphical
Models and Image Processing, vol. 62, no. 5, pp. 353–388,
2000.

[22] S. Yonemoto, D. Arita, and R. ichiro Taniguchi, “Real-time
human motion analysis and ik-based human figure control,”
in Workshop on Human Motion 2000, 2000, pp. 149–154.

[23] S. Gottschalk, M. Lin, and D. Manocha, “Obbtree: A hier-
archical structure for rapid interference detection,” inSIG-
GRAPH ’96, 1996, pp. 171–180.

[24] C.-C. Wu, J. Medina, and V. B. Zordan, “Simple steps
for simply stepping,” inInternational Symposium on Visual
Computing (ISVC) 2008, 2008, pp. 97–106.


